编辑:
2013-03-24
(2)鲜味:
谷氨酸型鲜味剂:属脂肪族化合物,它们的定味基是两端带负电的功能团,助味基是具有一定亲水性的基团。肌苷酸型鲜味剂:属芳香杂环化合物,其定味基是亲水的核糖磷酸,助味基是芳香杂环上的疏水取代基。
7 简述蛋白质的变性机理
天然蛋白质分子因环境的种种影响,从有秩序而紧密的结构变为无秩序的散漫构造,这就是变性。而天然蛋白质的紧密结构是由分子中的次级键维持的。这些次级键容易被物理和化学因素破坏,从而导致蛋白质空间结构破坏或改变。因此蛋白质变性的本质就是蛋白质分子次级键的破坏引起二级、三级、四级结构的变化。由于蛋白质特殊的空间构象改变,从而导致溶解度降低、发生凝结、形成不可逆凝胶、-SH等基团暴露、对酶水解的敏感性提高、失去生理活性等性质的改变。
8 哪些因素影响食品蛋白质的消化率?
(1)蛋白质的构象:蛋白质的结构状态影响着它们酶催化水解,天然蛋白质通常比部分变性蛋白质较难水解完全。
(2)抗营养因子:大多数植物分离蛋白和浓缩蛋白含有胰蛋白酶和胰凝乳蛋白酶抑制剂以及外源凝集素。
(3)结合:蛋白质与多糖及食用纤维相互作用也会降低它们的水解速度和彻底性。
(4)加工:蛋白质经受高温和碱处理会导致化学变化包括赖氨酸残基产生,此类变化也会降低蛋白质的消化率。
9 为什么蛋白质可作为较为理想的表面活性剂?
蛋白质可作为较为理想的表面活性剂主要是以下原因:一、蛋白质具有快速的吸附到界面的能力;二、蛋白质在达到界面后可迅速伸展和取向;三、达到界面后,即与邻近分子相互作用形成具有强内聚力和黏弹性的膜,能耐受热和机械作用。
10 蛋白质的界面性质包括那些,举例说明。
蛋白质的界面性质包括:乳化性:蛋白质在稳定乳胶体食品中起着非常重要的作用,并且存在着诸多因素影响着蛋白质的乳化性质,如仪器设备的类型、输入能量的强度、加油速率、温度、离子强度、糖类和低分子量表面活性剂与氧接触的程度、油的种类等等。起泡性:食品泡沫通常是气泡在连续的液相或含有可溶性表面活性剂的半固相中形成的分散体系。种类繁多的泡沫其质地大小不同,例如蛋白质酥皮、蛋糕、棉花糖和某些其他糖果产品、冰淇淋、啤酒泡沫和面包等。
五、论述题
1 蛋白质结构与功能的关系
(1)蛋白质一级结构与其构象及功能的关系
蛋白质一级结构是空间结构的基础,特定的空间构象主要是由蛋白质分子中肽链和测链R基团形成的次级键来维持,在生物体内,蛋白质的多肽链一旦被合成后,即可根据一级结构的特点自然折叠和盘曲,形成一定的空间构象。
一级结构相似的蛋白质,其基本构象及功能也相似,例如,不同种属的生物体分离出来的同一功能的蛋白质,其一级结构只有极少的差别,而且进化位置相距愈近的差异愈小。
(2)蛋白质空间结构与功能活性的关系
蛋白质多种多样的功能与各种蛋白质特定的空间构象密切相关,蛋白质的空间构象是其功能活性的基础,构象发生变化,其功能活性也随之改变。蛋白质变性时,由于其空间构象被破坏,故引起功能活性丧失,变性蛋白质在复性喉,构象复原,活性即能恢复。
从以上分析可以看出,只有当蛋白质以特定的适当空间构象存在时才具有生物活性。
2 氨基酸对食品可呈现出不同的风味,其往往能提供令人愉快地鲜香味,论述不同氨基酸所呈现的不同风味,并举例说明。
氨基酸的苦味:
氨基酸是多官能团分子,能与多种味受体结合,味感丰富。一般说来,除了小环亚胺氨基酸以外,D-型氨基酸大多以甜味为主。在L-型氨基酸中,当侧基很小时,一般以甜感占优势,如甘氨酸。当侧基较大并带碱基时,通常以苦味为主,如亮氨酸。当氨基酸的侧基不大不小时,呈甜兼苦味,如缬氨酸。若侧基属酸性基团时,则以酸味为主,如天冬氨酸。所有氨基酸的肽都含有数目相当的AH极性基团,但各种肽分子量的大小及其含有疏水基团的本质差别很大,因而这些疏水基与苦味受体相作用的能力也很不一样。因此肽的苦味可通过计算平均疏水值来预测。因为多肽参与疏水结合的能力与非极性氨基酸侧链疏水性的总和有关,这些相互作用对多肽展开的自由能有重要影响。
氨基酸的鲜味:
有人认为,鲜味分子需要有一条相当于3~9个碳原子长的脂链,而且两端都带有负电荷,当n=4~6时鲜味最强。脂链不限于直链,也可为脂环的一部分。保持分子两端的负电荷对鲜味至关重要,若将羧基经过酯化、酰胺化,或加热脱水形成内酯、内酰胺后,均将降低鲜味。例如,谷氨酸型鲜味剂属于脂肪族化合物,在结构上有空间专一性要求,若超出其专一性范围,将会改变或失去味感。它们的定位基是两端带负电的功能团;助味基是具有一定亲水性的基团。
3 试论述变性蛋白质的特性以及高压、热及冷冻对蛋白质变性的影响?
蛋白质分子受到某些物理、化学因素的影响时,发生生物活性丧失,溶解度降低等性质改变,但是不涉及一级结构改变,而是蛋白质分子空间结构改变,这类变化称为变性作用。变性后的蛋白质称为变性蛋白质。
变性蛋白质的特性:
(1)蛋白质变性后,原来包埋在分子内部的疏水基暴露在分子表面,空间结构遭到破坏同时破坏了水化层,导致蛋白质溶解度显著下降。
(2)蛋白质变性后失去了原来天然蛋白质的结晶能力。
(3)蛋白质变性后,空间结构变为无规则的散漫状态,使分子间摩擦力增大、流动性下降,从而增大了蛋白质黏度,使扩散系数下降。
(4)变性的蛋白质旋光性发生变化,等电点也有所提高。
高压和热结合处理对蛋白质的影响:
通过蛋白质的解链和聚合,改善制品的组织结构,嫩化肉质;钝化酶、微生物和毒素的活性,延长制品保藏期,提高安全性;增加蛋白质对酶的敏感性;提高肉制品的可消化性;通过蛋白质的解链作用,增加分子表面的疏水性以及蛋白质对特种配合基的结合能力,提高保持风味物质、色素、维生素的能力,改善制品风味和总体可接受性等。
冷冻对水产品蛋白质的影响:
冷冻后的贝肉风味降低、外观不够饱满、持水性下降等。储藏温度比冻结终温重要,在相同的储藏时间下,储藏温度低的贝肉蛋白质变小。
4 论述新型蛋白质的开发与利用及其应用前景。
(1)油料蛋白:
油料种子制取油脂后,其饼粕常含有大量的蛋白质。目前,油料蛋白的利用主要是大豆蛋白。它对面粉有增白作用,取代现有的化学增白剂;添加在面条、饺子中可以提高其韧劲,水煮过程中减少淀粉溶出率,不浑汤;添加烘焙食品中,可以提高饼干的酥脆度,强化面包的韧劲,改善蛋糕的松软度;添加在馒头、包子等蒸制食品中,使其表面光滑;添加在方便面、油条等油炸食品中,可减少油耗,减少食用时的油腻感。
(2)单细胞蛋白
单细胞蛋白质是指以工业方式培养的微生物,这些菌体含丰富的蛋白质,可用作人类食物或动物饲料。它是一种浓缩的蛋白类产品,含粗蛋白、维生素、无机盐、脂肪和糖类等,其营养价值优于鱼粉和大豆粉。开发上的优势:原料资源丰富、生产投资少、生产速率高、不需占用大量的耕地、不受生产地区、季节和气候条件的限制。
(3)昆虫蛋白:
昆虫具有食物转化率高、繁殖速度快和蛋白质含量高的特点,被认为是目前最大且最具开发潜力的动物蛋白源。它的蛋白质中氨基酸组分分布的比例与联合国粮食与农业组织制定的蛋白质中必需氨基酸的比例模式非常接近。因此,它是一类高品质的动物蛋白质资源。目前国内外已大规模工厂化生产昆虫蛋白系列食品。
(4)叶蛋白
叶蛋白是以新鲜的青绿植物茎叶为原料,经压榨取汁、汁液中蛋白质分离和浓缩干燥而制备的蛋白质浓缩物。它没有动物蛋白所含的胆固醇,具有防病治病,防衰抗老,强身健体等多种生理功能,是具有高开发价值的新型蛋白质资源。
5 论述蛋白质对食品色香味的影响。
在食品加工工业中加入蛋白质,可能会产生不同的风味物质。
(1)蛋白质的苦味:
水解蛋白质和发酵成熟的干酪有时具有明显的苦味;牛奶变质呈苦味均是由于蛋白质水解产生了苦味的短链多肽和氨基酸的缘故。
(2)蛋白质的异味:
醛、酮、醇、酚和氧化脂肪酸可以产生豆腥味、哈味、苦味或涩味,当它们与蛋白结合时,在烧煮和咀嚼后会释出而令人反感。
(3)天然蛋白质衍生物的甜味:
氨基酸及其二肽衍生物和二氨查耳酮衍生物两类甜味剂已经投入工业化生产。它们是由本来不甜的非糖天然物质经过改性加工成为高天度的安全甜味剂。
(4)风味结合:
油料种子蛋白和乳清浓缩蛋白由于一些异味成分的存在,例如醛、酮、醇、酚和脂肪酸氧化物,能够与蛋白质结合,使之在烹煮时不易挥发完全,在咀嚼时能感觉出豆腥味、哈味、苦味和涩味。
相关推荐:
标签:综合辅导
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。