编辑:
2016-08-17
11.30° 解析:本题考查了三角形的内角和.设三角形的三个内角分别是 ,由题意知 100°,则 50°,由三角形的内角和定理知 180°,∴ 30°,∴ 这个“特征三角形”的最小内角的度数为30°.
12.5 解析:根据题意,得 ,解得
①若 是腰长,则底边长为2,三角形的三边长分别为1,1,2,
∵ 1+1=2,∴ 不能组成三角形;
②若 是腰长,则底边长为1,三角形的三边长分别为2,2,1,
能组成三角形,周长=2+2+1=5.故填5.
13.1.5 解析:如图,延长 交 于点 ,
由 是角平分线, 于点 ,可以得出△ ≌
△ ,∴ 2, .
在△ 中,∵ ∴ 是△ 的中位线,
∴ ( )= = ×3
1.5.
14. 垂直平分 解析:∵ 是△ 的角平分线, 于点 于点 ,
∴ .
在Rt△ 和Rt△ 中, ∴ △ ≌△ (HL),∴ .
又 是△ 的角平分线,∴ 垂直平分 .
15.①②③ 解析:∵ 90°, ,∴ △ ≌△ .
∴ ∴ ②正确.
又∵ ∴ △ ≌△ ,∴ ③正确.
又∵∠1 ,∠2 ,∴ ∠1=∠2,∴ ①正确,
∴ 题中正确的结论应该是①②③.
16.39 解析:∵ △ 和△ 均为等边三角形,
∴
∵
∴ ∴ △ ≌△ ,∴
17.分析:本题考查了等腰三角形、三角形外角的性质.利用等腰三角形的两底角相等和三角形外角的性质设未知数列方程求解.
解:∵ ∴
而
设 则可得 84°,则 21°,即 21°.
18.分析:(1)根据线段垂直平分线的性质作图.
(2)根据线段垂直平分线上的点到线段两端点距离相等的性质,可得 又 是公共边,从而利用SSS可证得△ ≌△ ,进而得到 .
(1)解:作图如图所示:
(2)证明:根据题意作出图形(如图).
∵ 点M,N在线段AB的垂直平分线 上,∴ AM=BM,AN=BN.
又∵ MN=MN,∴ △AMN≌△BMN(SSS).∴ ∠MAN=∠MBN.
19.分析:本题考查了三角形的中位线、全等三角形、直角三角形的性质以及三角形的外角和定理.(1)要证明DE=EF,先证△ADE≌△CFE.(2)CD是Rt△ABC斜边上的中线,
∴ CD AD,∴ ∠1=∠A.而∠1+∠3=90°,∠A+∠B=90°,可得∠B=∠3.由CF∥AB可得∠2=∠A,要证∠B=∠A+∠DGC,只需证明∠3=∠2+∠DGC.
证明:(1)∵ 点D为边AB的中点(如图),DE∥BC,∴ AE=EC.
∵ CF∥AB,∴ ∠A=∠2.
在△ADE和△CFE中, ∴ △ADE≌△CFE(ASA),∴ DE=EF.
(2)在Rt△ACB中,∵ ∠ACB=90°,点D为边AB的中点,∴ CD=AD,∴ ∠1=∠A.
∵ DG⊥DC,∴ ∠1+∠3=90°.又∵ ∠A+∠B=90°,∴ ∠B=∠3.
∵ CF∥AB,∴ ∠2=∠A.∵ ∠3=∠2+∠DGC,∴ ∠B=∠A+∠DGC.
点拨:证明两个角相等的常用方法:①等腰三角形的底角相等;②全等(相似)三角形的对应角相等;③两直线平行,同位角(内错角)相等;④角的平分线的性质;⑤同角(或等角)的余角(或补角)相等;⑥对顶角相等;⑦借助第三个角进行等量代换.
20.分析:(1)只要通过证明∠CDO=∠COD就可得到△CDO是等腰三角形.利用BC=BD,
∠DBC=30°,求出∠BDC=∠BCD=75°,而∠COD=45°+30°=75°,从而得出∠CDO
∠COD.
(2)过点D,A分别作出△BDF与△ABC的高,将梯形分成两个直角三角形和一个矩形后,利用解直角三角形和矩形的性质等知识求解.
(1)证明:由题图(1)知BC=DE,∴ ∠BDC=∠BCD.
∵ ∠DEF=30°,∴ ∠BDC=∠BCD=75°.
∵ ∠ACB=45°,∴ ∠DOC=30°+45°=75°.∴ ∠DOC=∠BDC.
∴ △CDO是等腰三角形.
(2)解:如图,过点A作AG⊥BC,垂足为点G,过点D作DH⊥BF,垂足为点H.
在Rt△DHF中,∠F=60°,DF=8,∴ DH=4 ,HF=4.
在Rt△BDF中,∠F=60°,DF=8,∴ BD=8 ,BF=16.
∴ BC=BD=8 .
∵ AG⊥BC,∠ABC=45°,∴ BG=AG=4 ,∴ AG=DH.
∵ AG∥DH,∴ 四边形AGHD为矩形.∴ AD=GH=BF-BG-HF=16-4 -4=12-4 .
21.解:相等.理由:连接 .
因为 所以△ ≌△ ,所以 .
22.证明:在△ 中,因为 ,所以 .
又因为 ,所以
所以 .
所以 .
所以 .
23.证明:(1)连接 .因为 ,
所以Rt△ ≌Rt△ ,所以
(2)因为Rt△ ≌Rt△ ,所以 ,
所以点 在 的平分线上.
24.(1)证明:因为 垂直 于点 ,所以 ,所以 .
又因为 ,所以 .
因为 , ,所以 .
又因为点 是 的中点,所以 .
因为 ,所以△ ≌△ ,所以 .
(2)解: .证明如下:
在△ 中,因为 , ,
所以 .
因为 ,即 ,所以 ,所以 .
因为 为等腰直角三角形斜边上的中线,所以 .
在△ 和△ 中, , ,
所以△ ≌△ ,所以 .
欢迎大家阅读初二上册第一单元测试题,一定要细细品味哦,一起加油吧。
相关推荐:
标签:数学试卷
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。