编辑:
2013-12-16
参考答案
一、选择题
1.A 解析:
2.D 解析:若 都随着 的增大而增大,则 ,解得 ,只有D选项符合.
3.C 解析: ∵ ,∴ ,∴ 弦 三等分半圆,∴ 弦 、 、 对的圆心角均为60°,∴ ∠ = .
4.B 解析:圆锥的侧面积= ×1×2=2 (平方米).
5.C 解析:如图,连接 ,过点 作 ⊥ 于点 .∵ ⊥ , cm,
∴ cm.在Rt△OBC中,OB=10 cm,CB=8 cm,则 ,故选C.
6.C 解析:设气球内气体的气压p(kPa)和气体体积V( )之间的反比例
函数关系式为 ,∵ 点(1.6,60)为反比例函数图象上的点,∴ , .∴ .
当p=120 kPa时,V= .故为了安全起见,气体的体积应不小于 .
7.B 解析: 由∠BAE=∠EAC, ∠ABC=∠AEC,得△ABD∽△AEC; 由∠BAE=
∠BCE,∠ABC=∠AEC,得△ABD∽△CED.共两个.
8.D 解析:如图,连接BE,因为 ,所以∠ABC=∠C.因为∠C=∠AEB,所
以 ∠AEB=∠ABC.又∠BAD=∠EAB,所以△BAD∽△EAB,所以 ,
所以 .又 ,所以 .
9.C 解析:蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行,在开始时经过OA这一段,蚂蚁到O点的距离随运动时间t的增大而增大;到弧AB这一段,蚂蚁到O点的距离s不变,走另一条半径时,s随t的增大而减小,故选C.
10.C 解析:如图,连接AP、BQ.∵ AC,BC是两个半圆的直径,∠ACP=30°,
∴ ∠APC=∠BQC=90°.设 ,在Rt△BCQ中, 同理,在Rt△APC中, ,
则 ,故选C.
11.B 解析:∵ 抛物线的对称轴为直线 ,而抛物线与 轴的一个交点的横坐标为1,∴ 抛物线与 轴的另一个交点的横坐标为 ,根据图象知道若 ,则 ,故选B.
12.C 解析:可知两个三角形的相似比等于 ,又周长之比等于相似比,所以设两个三角形的周长分别为 ,则 24,解得 ,所以较大三角形的周长为14 cm,故选C.
二、填空题
13. 解析:设 ,∴ .
14.70° 解析:∵ ∠BDC=20°,∴ ∠A=20°.∵ AC为直径,∴ ∠ABC=90°,
∴ ∠ACB=70°.
15.
16.①③ 解析:因为图象与 轴有两个交点,所以 , ①正确:由图象可知开口向下,对称轴在 轴右侧,且与 轴的交点在 轴上方,所以 ,所以 , ②不正确;由图象的对称轴为 ,所以 ,即 ,故 , ③正确;由于当 时,对应的 值大于0,即 ,所以④不正确.所以正确的有①③.
17. 解析:如图,过点O作OF⊥AD,已知∠B=∠C=90°, ∠AOD=90°,
所以 .又 ,所以 .
在△ABO和△OCD中,
所以△ ≌△ .所以 = .根据勾股定理得 .
因为△AOD是等腰直角三角形,所以 ,即圆心O到弦AD的距离是 .
18. cm或6 cm 解析:分两种情况:
(1)假设∠BAC是锐角,则△ABC是锐角三角形,如图(1).∵ AB=AC,∴ 点A是优弧BC的中点.∵ OD⊥BC且 ,根据垂径定理推论可知,DO的延长线必过点A,连接BO,
∵ ,∴ .
在Rt△ADB中, ,∴ (cm); (2)若∠BAC是钝角,则△ABC是钝角三角形,如图(2),添加辅助线及求出 .
在Rt△ADB中, ,∴
cm.
综上所述, cm或6 cm.
19. 解析:设正方形OBCA的边长是1,则 ,
,
,故 .
20.1︰3 解析:∵ ∠ABC=90°,∠DCB=90°,∴ AB∥CD,∴ △AOB∽△COD.又∵ AB︰CD=BC︰CD=1︰ ,
∴ △AOB与△DOC的面积之比等于1︰3.
21. cm 解析:圆锥的侧面展开图如图所示,设∠ ,
由OA=2 cm,高PO= cm,得PA=6 cm,弧AA′=4 cm,
则 ,解得 .作 ,由 ,
得∠ .
又 cm,所以 ,所以 (cm).
22.2 解析:设直线AB与x轴交于D,则 ,所以 .
三、解答题
23.分析:先根据弧长公式计算出弯道的长度,再根据所用时间得出汽车的速度,再判断这辆汽车经过弯道时有没有超速.
解:∵ ,
∴ 汽车的速度为 (km/h),
∵ 60 km/h>40 km/h,
∴ 这辆汽车经过弯道时超速.
24.证明:(1)因为AB为⊙O的直径,所以∠ADB=90°,即AD⊥BC.
又因为AB=AC,所以D是BC的中点.
(2)因为AB为⊙O的直径, 所以∠AEB=90°.
因为∠ADB=90°,所以∠ADB=∠AEB.又∠C=∠C,所以△BEC∽△ADC.
25.解:(1)将点A(2,-3),B(-1,0)分别代入函数解析式,得
解得
所以二次函数解析式为 .
(2)由二次函数的顶点坐标公式,得顶点坐标为 ,作出函
数图象如图所示,可知要使该二次函数的图象与 轴只有一个交点,应
把图象沿 轴向上平移4个单位.
26.分析:已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解.
顶点式: ( 是常数, ),其中( )
为顶点坐标.本题还考查了二次函数的对称轴 .
解:(1)由图象知此二次函数过点(1,0),(0,3),
将点的坐标代入函数解析式,得
解得 (2)由(1)得函数解析式为 ,
即为 ,
所以抛物线的对称轴为 的最大值为4.
(3)当 时,由 ,解得 ,
即函数图象与 轴的交点坐标为( ),(1,0).
所以当 时, 的取值范围为 .
27.解:设经过t s△PQC和△ABC相似,由题意可知PA=t cm,CQ=2t cm.
(1)若PQ∥AB,则△PQC∽△ABC,
∴ ,∴ ,解得 .
(2)若 ,则△PQC∽△BAC,
∴ ,∴ ,解得 .
答: 经过4 s或 s△PQC和△ABC相似.
28.分析:(1)由题意知四边形 是矩形,所以 ,而点 是函数 ( )上的一点,所以 ,即得 ,面积不变;
(2)由四边形 是矩形,而矩形对角线的交点是对角线的中点,所以由点 即可求得 的坐标;
(3)由(2)及点 的坐标( )可得点 的坐标,代入解析式即可得 与 之间的关系.
解:(1)由题意知四边形 是矩形,
标签:数学家庭作业
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。