您当前所在位置:首页 > 初中 > 初三 > 数学 > 数学知识点

2014年初三年级数学知识点

编辑:

2014-06-19

81,三角形的中位线平行于第三边,并且等于它的一半

82,梯形的中位线平行于两底,并且等于两底和的 一半

L=(a+b) S=L×h

83,如果a:b=c:d,那么ad=bc

如果ad=bc,那么a:b=c:d

84,如果a/b=c/d,那么

(a±b)/ b=(c±d)/d

85,如果a/b=c/d=…=m/n(b+d+…+n≠0),那么

(a+c+…+m)/(b+d+…+n)=a/b

86,三条平行线截两条直线,所得的对应线段成比例

87,平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88,如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89,平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90,平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91,两角对应相等,两三角形相似(ASA)

92,直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93,两边对应成比例且夹角相等,两三角形相似(SAS)

94,三边对应成比例,两三角形相似(SSS)

95,如果一个直角三角形的斜边和一条直角边与另一个直角三

角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96,相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

97,相似三角形周长的比等于相似比

98,相似三角形面积的比等于相似比的平方

99,任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

100,任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等

于它的余角的正切值

101,圆是定点的距离等于定长的点的集合

102,圆的内部可以看作是圆心的距离小于半径的点的集合

103,圆的外部可以看作是圆心的距离大于半径的点的集合

104,同圆或等圆的半径相等

105,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

106,和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

107,到已知角的两边距离相等的点的轨迹,是这个角的平分线

108,到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

109,不在同一直线上的三个点确定一条直线

110,垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111, ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112,圆的两条平行弦所夹的弧相等

113,圆是以圆心为对称中心的中心对称图形

114,在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

115,在同圆或等圆中,如果两个圆心角,两条弧,两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116,一条弧所对的圆周角等于它所对的圆心角的一半

117,同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118,半圆(或直径)所对的圆周角是直角;90°的圆周角所

对的弦是直径

119,如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120,圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

121,①直线L和⊙O相交 d

②直线L和⊙O相切 d=r

③直线L和⊙O相离 d>r

122,经过半径的外端并且垂直于这条半径的直线是圆的切线

123,圆的切线垂直于经过切点的半径

124,经过圆心且垂直于切线的直线必经过切点

125,经过切点且垂直于切线的直线必经过圆心

126,从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

127,圆的外切四边形的两组对边的和相等

128,弦切角等于它所夹的弧对的圆周角

129,如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130,圆内的两条相交弦,被交点分成的两条线段长的积相等

131,如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

132,从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

133,从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

134,如果两个圆相切,那么切点一定在连心线上

135,①两圆外离d>R+r ②两圆外切 d=R+r

③两圆相交 R-r

④两圆内切 d=R-r(R>r) ⑤两圆内含d

136,相交两圆的连心线垂直平分两圆的公共弦

137,把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

138,任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139,正n边形的每个内角都等于(n-2)×180°/n

140,正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141,正n边形的面积Sn=pnrn/2 p表示正n边形的周长

142,正三角形面积√3a/4 a表示边长

143,如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为

(n-2)(k-2)=4

144,弧长计算公式:L=n∏R/180

145,扇形面积公式:S扇形=n∏R/360=LR/2

146,内公切线长= d-(R-r) 外公切线长= d-(R+r)

完成了小学阶段的学习,进入紧张的初中阶段。这篇是精品学习网特地为大家整理的,欢迎阅读!

标签:数学知识点

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。