编辑:haiyangcms
2013-06-14
一、知识结构
二、重点、难点分析
本节教学的重点是完全平方公式的熟记及应用.难点是对公式特征的理解(如对公式中积的一次项系数的理解).完全平方公式是进行代数运算与变形的重要的知识基础。
1.两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.即:
这两个公式是根据乘方的意义与多项式的乘法法则得到的.
这两个公式的结构特征是:左边是两个相同的二项式相乘,右边是三项式,是左边二中两项的平方和,加上(这两项相加时)或减去(这两项相减时)这两项乘积的2倍;公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等代数式.
2.只要符合这一公式的结构特征,就可以运用这一公式.
在运用公式时,有时需要进行适当的变形,例如 可先变形为 或 或者 ,再进行计算.
在运用公式时,防止发生 这样错误.
3.运用完全平方公式计算时,要注意:
(1)切勿把此公式与公式 混淆,而随意写成 .
(2)切勿把“乘积项” 中的2丢掉.
(3)计算时,要先观察题目特点是否符合公式的条件,若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算,若不能变为符合公式条件的形式,则应运用乘法法则进行计算.
4. 与 都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.
三、教法建议
1.在公式的运用上,与平方差公式的运用一样,应着重让学生掌握公式的结构特征和字母表示数的广泛意义,教科书把公式中的字母同具体题目中的数或式子,用“ ”连结起来,逐项比较、对照,步骤写得完整,便于学生理解如何正确地使用完全平方公式进行计算.
2.正确地使用公式的关键是确定是否符合使用公式的条件.重要的是确定两数,然后再看是否两数的和(或差),最后按照公式写出两数和(或差)的平方的结果.
3.如何使学生记牢公式呢?我们注意了以下两点.
(1)既讲“法”,又讲“理”
在教学中要讲法则、公式的应用,也要讲公式的推导,使学生在理解公式、法则道理的基础上进行记忆.我们引导学生借助面积图形对完全平方公式做直观说明,也是对说理的重视.在“明白道理”这个前提下的记忆,即使学生将来发生错误也易于纠正.
(2)讲联系、讲对比、讲特点
对于类似的内容学生容易混淆,比如在本节出现的(a+b)2=a2+b2的错误,其原因是把完全平方公式和“旧”知识(ab)2=a2b2及分配律弄混,排除新旧知识间相互干扰的一种作法是向学生指明新知识的特点.所以讲“理”是要讲联系、讲对比、讲特点.
标签:初一数学教案
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。