编辑:
2013-06-14
(2)解不等式
求不等式的解集的过程,叫做解不等式.
解方程 求出的是方程的解,而解不等式 求出的则是不等式的解集,为什么?
学生活动:观察思考,指名回答.
教师归纳:正是因为一元一次方程只有惟一解,所以可以直接求出.例如 的解就是 ,而不等式 的解有无限多个,无法一一列举出来,因而只能用不等式 或 揭示这些解的共同属性,也就是求出不等式的解集.实际上,求某个不等式的解集就是运用不等式的基本性质,把原不等式变形为 或 的形式, 或 就是原不式的解集,例如 的解集是 ,同理, 的解集是 .
【教法说明】学生对一元一次方程的解印象较深,而不等式与方程的相同点较多,因而易将“不等式的解集”与“方程的解”混为一谈,这里设置上述问题,目的是使学生弄清“不等式的解集”与“方程的解”的关系.
(3)在数轴上表示不等式的解集
①表示不等式 的解集:( )
分析:因为未知数的取值小于3,而数轴上小于3的数都在3的左边,所以就用数轴上表示3的点的左边部分来表示解集 .注意未知数 的取值不能为3,所以在数轴上表示3的点的位置上画空心圆圈,表示不包括3这一点,表示如下:
②表示 的解集:( )
学生活动:独立思考,指名板演并说出分析过程.
分析:因为未知数的取值可以为-2或大于-2的数,而数轴上大于-2的数都在-2右边,所以就用数钢上表示-2的点和它的右边部分来表示.如下图所示:
注意问题:在数轴上表示-2的点的位置上,应画实心圆心,表示包括这一点.
【教法说明】利用数轴表示不等式解的解集,增强了解集的直观性,使学生形象地看到不等式的解有无限多个,这是数形结合的具体体现.教学时,要特别讲清“实心圆点”与“空心圆圈”的不同用法,还要反复提醒学生弄清到底是“左边部分”还是“右边部分”,这也是学好本节内容的关键.
3.尝试反馈,巩固知识
(1)不等式的解集 与 有什么不同?在数轴上表示它们时怎样区别?分别在数轴上把这两个解集表示出来.
(2)在数轴上表示下列不等式的解集.
① ② ③ ④
(3)指出不等式 的解集,并在数轴上表示出来.
师生活动:首先学生在练习本上完成,然后教师抽查,最后与出示投影的正确答案进行对比.
【教法说明】教学时,应强调2.(4)题的正确表示为:
我们已经能够在数轴上准确地表示出不等式的解集,反之若给出数轴上的某部分数集,还要会写出与之对应的不等式的解集来.
4.变式训练,培养能力
(1)用不等式表示图中所示的解集.
【教法说明】强调“· ”“ °”在使用、表示上的区别.
(2)单项选择:
①不等式 的解集是( )
A. B. C. D.
②不等式 的正整数解为( )
A.1,2 B.1,2,3 C.1 D.2
③用不等式表示图中的解集,正确的是( )
A. B. C. D.
④用数轴表示不等式的解集 正确的是( )
学生活动:分析思考,说出答案.(教师给予纠正或肯定)
【教法说明】此题以抢答形式茁现,更能激发学生探索知识的热情.
(四)总结、扩展
学生小结,教师完善:
1. 本节重点:
(1)了解不等式的解集的概念.
(2)会在数轴上表示不等式的解集.
2.注意事项:
弄清“ · ”还是“ °”,是“左边部分”还是“右边部分”.
七、布置作业
必做题:P65 A组 3.(1)(2)(3)(4)
八、板书设计
6.2 不等式的解集
一、1.不等式的解集:一般地,一个含有未知数的不等式的所有的解组成这个不等式的解的集合,简称不等式的解集.
2.解不等式:求不等式解的过程
二、在数轴上表示不等式的解集
1. 2.
三、注意:(1)“ · ”与“ °”;(2)“左边部分”与“右边部分”.
标签:初一数学教案
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。