您当前所在位置:首页 > 初中 > 初一 > 数学 > 初一数学教案

定理与证明的教案

编辑:

2013-06-14

(三)教学过程

创设情境,引出课题

师:上节课我们学习了定理与证明,了解了这两个概念.并以证明“两直线平行,内错角相等”来说明什么是证明.我们再看这一命题的证明(投影出示).

例1  已知:如图1, , 是截线,求证: .

证明:∵ (已知),∴ (两直线平行,同位角相等).

∵ (对项角相等),∴ (等量代换).

这节课我们分析这一命题的证明过程,学习命题证明的步骤和格式.

[板书]2.9  定理与证明

探究新知

1.命题证明步骤

学生活动:由学生分组讨论以上命题的证明过程,按自己的理解说出证明一个命题都需要哪几步.

【教法说明】根据上一节“两直线平行,内错角相等”这一命题的证明过程让学生讨论、分析、归纳命题证明的一般步骤,一是可以加深对命题证明的理解,二是培养学生归纳总结能力。在总结步骤时,学生所说的层次不一定有逻辑性,或不太严密,教师要注意引导,使学生分清命题证明几个步骤的先后层次.

根据学生讨论,回答结果.教师归纳小结,师生共同得出证明命题的步骤(出示投影):

第一步,画出命题的图形.

先根据命题的题设即已知条件,画出图形,再把命题的结论即求证的内容在图上标出.还要根据证明的需要,在图上标出必要的字母或符号,以便于叙述或推理过程的表达.

第二步,结合图形写出已知、求证.

把命题的题设化为几何符号的语言写在已知中,命题的结论转化为几何符号的语言写在求证中.

第三步,经过分析,找出由已知推得求证的途径,写出推理的过程.

学生活动:结合“两直线平行,内错角相等”这一命题的证明,理解以上命题证明的一般步骤(给学生一定时间理解记忆).

【教法说明】在以上第二个步骤中,将文字语言转化为符号语言是教学中的难点,要注意在练习中加强辅导,第三步由学生独立完成有困难,要逐步培养训练,现阶段暂不要求学生独立完成.

反馈练习:(1)画出证明命题“两直线平行,同旁内角互补”时的图形,写出已知、求证.

(2)课本第112页A组第5题.

【教法说明】由学生依照例1“两直线平行,内错角相等”这一命题的证明画出图形,写出已知、求证,巩固命题证明的第一、二步.

2.命题的证明

例2  证明:邻补角的平分线互相垂直.

【教法说明】此例题完全放手让学生独立完成有一定困难,但教师也不能包办代替,最好通过让学生分步讨论,同桌互相磋商,分步完成的方法,使学生对命题证明的每一步都进一步理解,教师可以给学生指明思考步骤.

(1)分析命题的题设与结论,画出命题证明所需要的图形.

邻补角用图2表示:

图2

添画邻补角的平分线,见图3:

图3

(2)根据命题的题设与结论写出已知、求证.邻补角用几何符号语言提示: ,角平分线用几何符号语言表示: , ,求证邻补角平分钱互相垂直,用符号语言表示: .

(3)分析由已知谁出求证途径,写出证明过程.

有什么结论后可得 ( ),由已知可以推导 吗?学生讨论思考.

【教法说明】以上步骤的完成教师只提供思路,具体结论的得出与操作要由学生独立完成.找一个学生到黑板上板演,其他同学在练习本上写出完成整过程.

已知:如图, , , .

求证:

证明:∵ (已知),又∵ , (已知),∴ .

∴ (垂直定义).

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。