编辑:
2016-08-11
四、努力解一解(共36分)
*25、用正方体小木块搭建成的图形,下面三个图分别是它的主视图、俯视图、和左视图,请你观察它是由多少块小木块组成的
26、根据北京市统计局公布的2000年、2005年北京市人口数据,绘制统计图表如下:
2000年、2005年北京市常住人口中受教育程度情况统计表(人数单位:万人)
年份 大学程度人数(指大专及以上) 高中程度人数(含中专) 初中程度人数 小学程度人数 其他人数
2000年 233 320 475 234 120
2005年 362 372 476 212 114
请利用上述统计图表提供的信息回答下列问题:
(1)从2000年到2005年北京市常住人口增加了多少万人?
(2)请结合2000年和2005年北京市常住人口受教育程度的状况,谈谈你的看法。
27、一个正方体的骰子,1和6,2和5,3和4是分别相对的面上的点。现在有12个正方形格子的纸上画好了点状的图案,如图所示,若经过折叠能做成一个骰子,你认为应剪掉哪6个正方形格子?(请用笔在要剪掉的正方形格子上打“×”,不必写理由)
**28、如图,已知射线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.
(1)求∠EOB的度数.
(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.
(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.
答案
1. C 2. D 3. C 4. A 5. D 6. C 7. B 8. B 9. D 10. D
11. 4
12. 39°43′,77°21′48″
13. 22
14. AC,BD,∠ACB、∠ADC、∠CDB,∠ACD、∠B,∠BCD
15. 162°、108°
16. 20°
17. 65°
18. 2005年
19. 9,6
20. 105°.
21. 因为E是AC中点,F是BD中点, 所以AE=EC,DF=FB. 又因为EF=a,CD=b
所以EC+DF=EF-CD=a-b , 所以AE+FB=EC+DF=a-b,
所以AB=AE+EF+FB=(AE+FB)+EF=a-b+a=2a-b, 即AB=2a-B.
22.(1)①∠AOC=∠1.理由是:因为∠COD是直角,所以∠AOC+∠2=90°,又∠1+∠2=90°,根据同角的余角相等,可得∠AOC=∠1. ②∠EOB=∠COB. 理由是:因为∠1+∠EOB=180°,∠AOC+∠COB=180°,而∠AOC=∠1,根据等角的补角相等,可得∠EOB=∠COB.
(2)互余的角:∠1与∠2,∠AOC与∠2,互补的角:∠1与∠EOB,∠AOC与∠EOB,
∠AOC与∠COB,∠1与∠COB,∠2与∠AOD.
23. 因为EF∥AD,所以∠AGE=∠BAD,∠E=∠DAC. 又因为AD平分∠BAC,所以∠BAD=∠DAC ,所以∠AGE=∠E.
24. 因为EF∥CD,所以∠BEF=∠BCD,∠FED=∠EDC .又因为DE∥AC,所以∠EDC=∠DCA ,所以∠FED=∠DCA ,因为CD平分∠ACB ,所以∠DCA=∠BCD,所以∠BEF=∠FED,即EF平分∠BED.
25. 2+1+3+1+1+2=10.如图所示:
26. (1)362+372+476+212+114-(233+320+475+234+120)=1536-1382=154(万人)
(2)大学程度人数比例逐渐提高(答案不唯一)
27. 如图所示:
28.(1) 因为CB∥OA,∠C=∠OAB=100°,所以∠COA=180°-100°=80°,又因为E、F在CB上,∠FOB=∠AOB,OE平分∠COF,所以∠EOB= ∠COA= ×80°=40°.
(2)不变,因为CB∥OA,所以∠CBO=∠BOA,又∠FOB=∠AOB,所以∠FOB=∠OBC,而∠FOB+∠OBC=∠OFC,即∠OFC=2∠OBC,所以∠OBC:∠OFC=1:2.
(3)存在某种情况,使∠OEC=∠OBA,此时∠OEC=∠OBA=60°.理由如下:因为 ∠COE+∠CEO+∠C=180°,∠BOA+∠OAB+∠ABO=180°,且∠OEC=∠OBA,∠C=∠OAB=100°,所以∠COE =∠BOA,又因为∠FOB=∠AOB,OE平分∠COF,所以∠BOA=∠BOF=∠FOE=∠EOC= ∠COA=20°,所以∠OEC=∠OBA=60°.
精品小编为大家提供的七年级数学暑假作业就到这里了,愿大家都能在学期努力,丰富自己,锻炼自己。
相关推荐:
标签:数学暑假作业
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。