编辑:
2016-08-10
2、你有什么体会?
㈤课堂跟踪反馈
1、下列各数中,是无理数的是( )
A. ?1.732 B. 1.414
C. D. 3.14
2、已知四个命题,正确的有( )
⑴有理数与无理数之和是无理数 ⑵有理数与无理数之积是无理数
⑶无理数与无理数之积是无理数 ⑷无理数与无理数之积是无理数
A. 1个 B. 2个 C. 3个 D.4个
3、若实数a满足a??1,则( ) a
A. a?0 B. a?0 C. a?0 D. a?0
4、下列说法正确的有( )
⑴不存在绝对值最小的无理数
⑵不存在绝对值最小的实数
⑶不存在与本身的算术平方根相等的数
⑷比正实数小的数都是负实数
⑸非负实数中最小的数是0
A. 2个 B. 3个 C. 4个 D.5个
5
2的相反数是
2 ,绝对值是
2
?
⑶
3???
⑷若x?,则x?
6
x?7已知实数a、b、c在数轴上的位置如图所示:
2?2化简 2c?a?c?b?a?b?a?c?b
答案:
5 2
, 2 ,
, 1 , 7. a?b?4c
教学评价:
波利亚认为,“头脑不活动起来,是很难学到什么东西的,也肯定学不到更多的东西”“学东西的最好途径是亲自去发现它”“学生在学习中寻求欢乐”.在本节课的教学设计中注意从学生的认知水平和亲身感受出发,创设学习情境,提高学生学习数学的积极性和学习兴趣,设计系列活动让学生经历不同的学习过程.在活动过程中让学生动手试一试,说说自己的发现并与同学交流结论,在交流中尝试得出结论:任何一个有理数都可以写成有限小数或无限循环小数的形式.进一步地提出问题:任何一个有限小数或无限循环小数都能化成分数吗?引入了无理数和实数的概念后要求学生对所学过的数按照一定的标准进行分类.分类思想是解决数学问题的常用的思想,在教学过程中,教师应该创造条件,让学生体会分类标准与分类结果之间的关系.本课提出的问题“你能尝试着找出三个无理数来吗?”具有较大的开放性,给学生提供了思维空间,能促使学生积极主动地参与到数学学习过程中,亲自体验知识的形成过程.
教学反思:
本节课在开方的基础上引进无理数的概念,并将数从有利数额范围扩充到实数的范围。由于实数涉及的理论较深,数的概念又比较抽象,这些概念看着简单,但学生要真正掌握还是有点困难。
通过对八年级上册数学教案范文的学习,希望对老师有所帮助,提供更多的教学参考内容。
相关推荐:
标签:数学教案
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。