编辑:
2016-08-18
★ 设计意图:
1、通过练习,总结平方根的性质,有助于学生对平方根性质的感性认识,加深理解。
2、因为正数的平方根有两个,用符号表示时常漏掉“-”号,但算术平方根的值唯一确定,
而由于正数a的两个平方根互为相反数,
其负平方根可以表示为这样就可以用算术平方根来表示和研究平方根,通过这种对其间联系与区别的提示,有助于加深对它们的了解
3、算术平方根具有非负性,此性质经常与绝对值、偶次方综合应用,故需要补充说明。
4、进一步熟悉平方根与算术平方根的表示方法,注意各式表达的意义,及时纠正学生可能出现的错误。
知识点三:开平方运算
★ 教学建议:
1、 4的平方根,记作。其中4称为数, 求一个数的平方根的运算,叫做 .
2、例题分析:将下列各数开平方
(1)49 (2)1、69 (3)0
3、用计算器求一个正数的算术数平方根
4、练一练(1)求下列各数的平方根:
64:_______; 49:_______; 0.36:_______;324:_______。 81
(2).225=________;±72=_______;2)=_______; 9
2 =________;0.9)1?________;a2(a<0)=_______。 4
(3)求下列各式中的x:(设计说明:为以后学习一元二次方程做准备)
①x2=196; ②(x+1)2=9; ③ x2-169=0; ④(4x)2=16。
5、引导学生总结怎样检验开平方的正确与否
★ 设计意图:
1、将一个正数开平方的过程,就是先求出这个正数的算术平方根,然后由此写出它的两个平方根,从而进一步认识一个正数的两个平方根与它的算术数平方根的关系,加深对平方根概念的理解。
2、重视用计算器求一个正数的算术平方根,使学生真正把计算器作为一个学习工具加以使用。
知识点四、立方根
★ 教学建议:
1、问 题
现有一只体积为216 cm3的正方体纸盒,它的每一条棱长x是多少?
(类比平方根的引入,通过此问题,要尽量让学生自己总结出立方根的定义。)
2.概 括(让生自己归纳)
上面所提出的问题,实质上就是要找一个数x,使得x 3=216。
这个数的立方等于216.
容易验证,63=216,所以正方体的棱长应为6 cm.
如果一个数的立方等于a,那么这个数就叫做a的 。
3.提问:一个正数如果有立方根,有几个?是正是负?负数呢?0呢?
试一试:
(1)x3=1, 则x = , 即1的立方根是 ;
(2)x 3=-1, 则x = , 即-1的立方根是 ;
(3)x 3=8, 则x = ,即8的立方根是 ;
x 3=-8, 则x = ,即-8的立方根是 ;
(4)x 3=27, 则x = ; 即27的立方根是 ;那么-27的立方根是 ;
(5)x 3=-27, 则x。 64
引导总结:(立方根的性质)
一个正数的立方根有 个,它是 数
一个负数的立方根有 个,它是 数
0的立方根是
4.自学阅读:
9的立方根,记作 ,读作“三次根号 ”。其中9称为 数,3称为 数.
求一个数的立方根的运算,叫做 .
5.例题学习:
例1 求下列各数的立方根: (1)83; (2)-125; (3)-0.008; (4) 3; (5)0; 278
(6)64; (7)-64; (8)1.25; (9)0.001。
6、用计算器求一个数的立方根
7、课堂练习:
[A组]:[B组]
★ 设计意图:
1、采用一个求立方根的实际应用问题,已知体积,求正方体的棱长。由实际应用问题是学生易于接受。再对已学过的相似运算---平方根进行复习,为接下来与立方根进行比较打下基础。
2、为培养学生自主学习的能力,为他们布置了问题,让他们带着问题看书。自己找出立方根的基本概念。
3、关于立方根的个数的讨论,是本节的一个难点。考虑到这个结论与平方根的相应结论不同,采用了先启发学生思考的办法,用“想一想”提出有关正数、0、负数立方根个数的思考题,接着安排一个练习题,求一些具体数的立方根,在学生经过思考并有了一些感性认识之后,自己总结出结论。
4、引导学生自己总结平方根与立方根的区别,强调:用根号式子表示立方根时,根指数不能省略;以及立方根的唯一性。
上文为大家推荐的初二上学期数学教学计划范文大家还满意吗?祝大家学习进步。
相关推荐:
标签:数学教学计划
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。