人教版九年级上册数学教学计划格式:实际问题与一元二次方程

编辑:sx_yanxf

2016-08-11

精品学习网为大家准备了九年级上册数学教学计划格式,供大家参考,希望能帮助到大家。

教学准备

1. 教学目标

知识技能

1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.

2.能根据具体问题的实际意义,检验结果是否合理.

过程方法

经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。

情感态度与价值观

通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.

2. 教学重点/难点

教学重点:列一元二次方程解有关传播问题的应用题

教学难点:发现传播问题中的等量关系

3. 教学用具

制作课件,精选习题

4. 标签

教学过程

一、导入新课

师:同学们好,我们已经学过用一元一次方程来解决实际问题,你还记得列一元一次方程解决实际问题的步骤吗?

生:审题、设未知数、找等量关系、列方程、解方程,最后答题.

试:同一元一次方程、二元一次方程(组)等一样,一元二次方程也可以作为反映某些实际问题中数量关系的数学模型.这一节我们就讨论如何利用一元二次方程解决实际问题.

二、探索新知

【问题情境】

有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?

【分析】

(1)本题中有哪些数量关系?

(2)如何理解“两轮传染”?

(3)如何利用已知的数量关系选取未知数并列出方程?

(4)能否把方程列得更简单,怎样理解?

(5)解方程并得出结论,对比几种方法各有什么特点?

【解答】

设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有x+1人患了流感,第二轮传染后有x(1+x)人患了流感。于是可列方程:

1+x+x(1+x)=121

解方程得x1=10,x2=-12(不合题意舍去)

因此每轮传染中平均一个人传染了10个人.

【思考】

如果按这样的传播速度,三轮传染后有多少人患了流感?

【活动方略】

教师提出问题

学生分组,分别按问题(3)中所列的方程来解答,选代表展示解答过程,并讲解解题过程和应注意问题.

【设计意图】

使学生通过多种方法解传播问题,验证多种方法的正确性;通过解题过程的对比,体会对已知数量关系的适当变形对解题的影响,丰富解题经验.

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。