编辑:sx_haody
2014-04-06
精品学习网整理了2014朝阳区高三数学一模试题,供2014年的高考考生和家长参考。
第一部分(选择题 共40分)
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中, 选出符合题目要求的一项.
(1)复数 在复平面内对应的点位于
(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
(2)已知集合 ,集合 ,则
(A) (B) (C) (D)
(3)已知平面向量 , 满足 , ,则 与 的夹角为
(A) (B) (C) (D)
(4)如图,设区域 ,向区域 内
随机投一点,且投入到区域内任一点都是等可能的,则点落
入到阴影区域 的概率为
(A) (B)
(C) (D)
(5)在 中, , ,则“ ”
是“ ”的
(A)充分不必要条件 (B)必要不充分条件
(C)充要条件 (D)既不充分也不必要条件
(6)执行如图所示的程序框图,输出的S值为
(A) (B)
(C) (D)
(7)已知函数 .下列命题:
①函数 的图象关于原点对称; ②函数 是周期函数;
③当 时,函数 取最大值;④函数 的图象与函数 的图象没有公共点,其中正确命题的序号是
(A) ①③ (B)②③ (C) ①④ (D)②④
(8)直线 与圆 交于不同的两点 , ,且 ,其中 是坐标原点,则 实数 的取值范围是
(A) (B)
(C) (D)
第二部分(非选择题 共110分)
二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上 .
(9)在各项均为正数的等比数列 中, , ,则该数列的前4项和
为 .
(10)在极坐标系中, 为曲线 上的点, 为曲线 上的点,则线段
长度的最小值是 .
(11)某三棱锥的三视图如图所示,则这个三棱锥的体积
为 ;表面积为 .
(12)双曲线 的一个焦点到其渐近线的距离是 ,则 ;
此双曲线的离心率为 .
(13)有标号分别为1,2,3的红色卡片3张,标号分别为1,2,3的
蓝色卡片3张,现将全部的6张卡片放在2行3列的格内
(如图).若颜色相同的卡片在同一行,则不同的放法种数
为 .(用数字作答)
(14)如图,在四棱锥 中, 底面 .底面 为梯形, , ∥ , , .若点 是线段 上的动点,则满足 的点 的个数是 .
三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.
(15)(本小题满分13分)
已知函数 , .
(Ⅰ)求 的值及函数 的最小正周期;
(Ⅱ)求函数 在 上的单调减区间.
(16)(本小题满分13分)
某单位从一所学校招收某类特殊人才.对 位已经选拔入围的学生进行运动协调能力和逻辑思维能力的测试,其测试结果如下表:
一般 良好 优秀
一般
良好
优秀
例如,表中运动协调能力良好且逻辑思维能力一般的学生有 人.由于部分数据丢失,只知道从这 位参加测试的学生中随机抽取一位,抽到运动协调能力或逻辑思维能力优秀的学生的概率为 .
(I)求 , 的值;
(II)从参加测试的 位学生中任意抽取 位,求其中至少有一位运动协调能力或逻辑思
维能力优秀的学生的概率;
(III)从参加测试的 位学生中任意抽取 位,设运动协调能力或逻辑思维能力优秀的学
生人数为 ,求随机变量 的分布列及其数学期望 .
(17)(本小题满分14分)
如图,四棱锥 的底面为正方形,侧面 底面 . 为等腰直角三角形,且 . , 分别为底边 和侧棱 的中点.
(Ⅰ)求证: ∥平面 ;
(Ⅱ)求证: 平面 ;
(Ⅲ)求二面角 的余弦值.
(18)(本小题满分13分)
已知函数 , .
(Ⅰ)求函数 的单调区间;
(Ⅱ)若函数 在区间 的最小值为 ,求 的值.
(19)(本小题满分14分)
已知椭圆 经过点 ,离心率为 .
(Ⅰ)求椭圆 的方程;
(Ⅱ)直线 与椭圆 交于 两点,点 是椭圆 的右顶点.直线 与直线 分别与 轴交于点 ,试问以线段 为直径的圆是否过 轴上的定点?若是,求出定点坐标;若不是,说明理由.
(20)(本小题满分13分)
从 中这 个数中取 ( , )个数组成递增等差数列,所有可能的递增等差数列的个数记为 .
(Ⅰ)当 时,写出所有可能的递增等差数列及 的值;
(Ⅱ)求 ;
(Ⅲ)求证: .
北京市朝阳区高三年级第一次综合练习
数学答案(理工类) 2014.3
一、选择题
题号 1 2 3 4 5 6 7 8
答案 B A B A B D C D
二、填空题
题号 9 10 11 12 13 14
答案
2
2
三、解答题
15. (本小题满分13分)
解:
.
(Ⅰ) .
显然,函数 的最小正周期为 . …………… 8分
(Ⅱ)令 得
,
又因为 ,所以 .
函数 在 上的单调减区间为 . …………… 13分
16. (本小题满分13 分)
解:(I)设事件 :从 位学生中随机抽取一位,抽到运动协调能力或逻辑思维能力优秀的学生.
由题意可知,运动协调能力或逻辑思维能力优秀的学生共有 人.
则 .
解得 .
所以 . …………… 4分
(II)设事件 :从 人中任意抽取 人,至少有一位运动协调能力或逻辑思维能力优秀的学生.
由题意可知,至少有一项能力测试优秀的学生共有 人.
则 . …………… 7分
(III) 的可能取值为 , , .
位学生中运动协调能力或逻辑思维能力优秀的学生人数为 人.
所以 ,
,
.
所以 的分布列为
所以, . …………… 13分
17. (本小题满分14分)
(Ⅰ)证明:取 的中点 ,连接 , .
因为 , 分别是 , 的中点,
所以 是△ 的中位线.
所以 ∥ ,且 .
又因为 是 的中点,且底面 为正方形,
所以 ,且 ∥ .
所以 ∥ ,且 .
所以四边形 是平行四边形.
所以 ∥ .
又 平面 , 平面 ,
所以 平面 . ……………4分
标签:高考数学模拟题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。