编辑:
2014-04-08
(Ⅱ) 是定值,且 .……………………………………………………(7分)
理由如下:
依题意知,直线 的斜率存在,故可设直线 的方程为 ,
设 ,由 消去 并整理,
得 ,
所以 ①, ②, …………………………………(9分)
因为 ,所以 ,
即 又 与 轴不垂直,所以 ,
所以 ,同理 ,………………………………………………………(11分)
所以 ,
将①②代入上式可得 ,即 为定值.……………………………………(12分)
(21)解:(Ⅰ)易知函数 的定义域是 ,且 ,……………(1分)
因为函数 的极值点为 ,
所以 ,且 ,
所以 或 (舍去),…………………………………………………………………(2分)
所以 , ,
所以当 时,函数 没有零点;
当 时,函数 有四个零点;
当 时,函数 有两个零点;
当 时,函数 有三个零点;
当 时,函数 有两个零点.…………………………………………………………(8分)
(Ⅲ) ,
在区间 上,函数 是 的“伴随函数”,则 恒成
综合①②可知 的取值范围是 .…………………………………………………(12分)
(22)解:(Ⅰ) 因为四边形 为圆的内接四边形,所以 ………(1分)
又 所以 ∽ ,则 .……………………………(3分)
而 ,所以 .…………………………………………………………(4分)
又 ,从而 ……………………………………………………………(5分)
(Ⅱ)由条件得 .……………………………………………………………(6分)
设 ,根据割线定理得 ,即
所以 ,解得 ,即 .……………………………………(10分)
(23)解:(Ⅰ) 由题意知,直线 的直角坐标方程为 .………………(2分)由题意得曲线 的直角坐标方程为 ,
所以曲线 的参数方程为 .………………………………(5分)
(Ⅱ) 设点 的坐标为 ,则点 到直线 的距 离为
,
所以当 时, .……………………………………(10分)
(24)解:(Ⅰ)当 时, 即 ,
当 时,得 ,即 ,所以 ;
当 时,得 成立,所以 ;
当 时,得 ,即 ,所以 .
故不等式 的解集为 .………………………………………(5分)
(Ⅱ)因为 ,
由题 意得 ,则 或 ,
解得 或 ,
故 的取值范围是 .…………………………………………………(10分)
高考数学理科模拟试题就介绍到这里了,更多精彩内容请继续关注精品学习网!
相关推荐:
标签:高考数学模拟题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。