您当前所在位置:首页 > 高考 > 宁夏高考 > 宁夏高考数学

宁夏2014高考数学知识点归纳之函数的奇偶性与周期性

编辑:sx_bilj

2014-03-10

宁夏2014高考数学知识点归纳之函数的奇偶性与周期性

知识要点:

一、函数的奇偶性

1.定义:对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=-f(x),那么f(x)为奇函数;

对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=f(x),那么f(x)为偶函数;

2.性质:

(1)函数依据奇偶性分类可分为:奇函数非偶函数,偶函数非奇函数,既奇且偶函数,非奇非偶函数;

(2) f(x),g(x)的定义域为D;

(3)图象特点:奇函数的图象关于原点对称;偶函数的图象关于原点对称;

(4)定义域关于原点对称是函数具有奇偶性的必要不充分条件,奇函数f(x)在原点处有定义,则有f(0)=0;

(5)任意一个定义域关于原点对称的函数f(x)总可以表示为一个奇函数与偶函数的和的形式:f(x)=g(x)+h(x),其中g(x)=-[f(x)+f(-x)]为偶函数,h(x)=-[f(x)-f(-x)]为奇函数;

(6)奇函数在关于原点对称的区间具有相同的单调性,偶函数在关于原点对称的区间具有相反的单调性。

3.判断方法:

(1)定义法

(2)等价形式:f(-x)+f(x)=0,f(x)为奇函数;

f(-x)-f(x)=0,f(x)为偶函数。

4.拓展延伸:

(1)一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b-f(a-x),则y=f(x)的图象关于点(a,b)成中心对称;

(2)一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a-x),则它的图象关于x=a成轴对称。

二、周期性:

1.定义:对于函数y=f(x),如果存在一个非零常数T,使得当自变量x取定义域内的每一个值时,都有f(x)=f(x+T)成立,那么就称函数y=f(x)为周期函数。

2.图象特点:

将函数y=f(x)的图象向左(右)平移的整数倍个单位,所得的函数图象与函数y=f(x)的图象重合。

3.函数图象的对称性与周期性的关系:

(1)若对于函数y=f(x)定义域内任意一个x都有f(a+x)=f(a-x)且f(b+x)=f(b-x),(a、b不相等的常数)则函数为周期函数。(周期为:2|a-b|)

(2)若对于函数y=f(x)定义域内任意一个x都有f(a+x)=-f(a-x)且f(b+x)=-f(b-x),(a、b不相等的常数)则函数为周期函数。(周期为:2|a-b|)

(3)若对于函数y=f(x)定义域内任意一个x都有f(a+x)=-f(a-x)且f(b+x)=f(b-x),(a、b不相等的常数)则函数为周期函数。(周期为:4|a-b|)

典型例题

例1:判断下列函数的奇偶性:

(1)f(x)=(x-1)·■

解:函数的定义域为x∈{x|-1≤x<1}

函数f(x)=(x-1)·■为∴f(x)非奇非偶函数

(2) f(x)=loga(-x+-)

解:x∈R

f(-x)=loga(x+-

=loga-

=-loga(-x+-)=-f(x)

∴f(x)为奇函数

(3)f(x)=x·(-+-)

解:x∈{x∈R|x≠0}

f(-x)-f(x)=-x(-+-)-x(-+-)

=-x(-+-+1)=0

∴f(x)为偶函数

(4)f(x)=-

解:1+cosx+sinx≠0

sin(x+-)≠--,x∈{x|x≠2k-且x≠2k--,k∈R}

定义域不关于原点对称,∴f(x)为非奇非偶函数

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。