编辑:
2015-08-04
16.(本小题满分12分)已知椭圆的焦点在轴上,中心在原点,离心率,直线和以原点为圆心,椭圆的短半轴为半径的圆相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左、右顶点分别为、,点是椭圆上异于、的任意一点,设直线、的斜率分别为、,证明为定值.
—选修2-3参考答案
1.C
2.C
3.B
4.D
5.C
6.B
7.C
8.D
9.1
10.4
11.0
12.
13.
14.解:(1)设Tr+1=为常数项,则有m(12-r)+nr=0
即m(12-r)+nr=0 所以=4,即它是第5项
(2)因为 第5项是系数最大的项
15.
令………………6分
∴递减,在(3,+)递增
∴的极大值为…………8分
(3)
①若上单调递增。∴满足要求。…………………10分
②若
∵恒成立,
恒成立,即a>0……………11分
时,不合题意。
综上所述,实数的取值范围是……………12分
16.(Ⅰ)椭圆方程
2015年高二数学暑假作业介绍到这里就结束了,希望对你有所帮助。
相关推荐:
标签:高二数学暑假作业
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。