您当前所在位置:首页 > 高中 > 高二 > 高二数学 > 高二数学知识点

高中数学知识点总结:立体几何重在建立空间概念

编辑:sx_zhaodan

2014-06-13

高中数学知识点总结:立体几何重在建立空间概念

【摘要】高中学生在学习中或多或少有一些困惑,精品学习网的编辑为大家总结了高中数学知识点总结:立体几何重在建立空间概念,各位考生可以参考。

立体几何是高中数学中比较容易的一部分,高考中所占分值在20分以上,拿分应该不成问题。从目前复习情况来看,一部分考生学不好的原因大致有三个:一是基础知识不牢固;二是没有建立立体感和空间概念;三是表述不规范。

勤看课本多积累  重视课本作用。立体几何课本中的例题、习题除了具有紧扣教材、难度适中、方法典型等特点外,还有不少定理是以例题或习题形式出现的,所以要使用好课本,熟悉课本。归纳常用方法,如证明若干点共线的基本方法是证明这些点是某两个面的公共点,又如求异面直线所成角,总是先平移成交角,而平移往往用三角形中位线或平行四边形的性质,再如找二面角的平面角时,常用三垂线定理或其逆定理。

要用图形、文字、符号三种形式表达概念、定理、公式,要及时不断地复习前面学过的内容。这是因为《立体几何》的内容前后联系紧密,前面内容是后面内容的根据,后面内容既巩固了前面的内容,又发展和推广了前面内容。要学会用图(画图、分解图、变换图)帮助解决问题;要掌握求各种角、距离的基本方法和推理证明的基本方法———分析法、综合法、反证法。

多积累。注意平面几何和立体几何概念的区别与联系,如:空间的垂直未必相交;正三棱锥不仅要底面是正三角形,还要顶点在底面上的射影是底面三角形的中心;三棱锥顶点在底面上的射影是底面三角形的外心、内心、垂心的条件各是什么等问题。记住一些特殊图形的线面关系和有关量。如:正方体中对角线与侧面对角线异面时,它们互相垂直;正四面体相对棱相互垂直;直角四面体的三个侧面面积的平方和等于底面面积的平方等等;若能记住它,将提高解题速度,并且使考生对问题的理解更加快捷。

提高空间想像力  从认识平面图形到认识立体图形是一次飞跃,要有一个过程。有的同学自制一些空间几何模型并反复观察,这有益于建立空间观念,是个好办法。有的同学有空就对一些立体图形进行观察、揣摩,并且判断其中的线线、线面、面面位置关系,探索各种角、各种垂线作法,这对于建立空间观念也是好方法。

建立空间观念要做到:

重视看图能力的培养:对于一个几何体,可从不同的角度去观察,可以是俯视、仰视、侧视、斜视,体会不同的感觉,以开拓空间视野,培养空间感。

加强画图能力的培养:掌握基本图形的画法;如异面直线的几种画法、二面角的几种画法等等;对线面的位置关系,所成的角,所有的定理、公理都要画出其图形,而且要画出具有较强的立体感,除此之外,还要体会到用语言叙述的图形,画哪一个面在水平面上,产生的视觉完全不同,往往从一个方向上看不清的图形,从另方向上可能一目了然。

加强认图能力的培养:对立体几何题,既要由复杂的几何图形体看出基本图形,如点、线、面的位置关系;又要从点、线、面的位置关系想到复杂的几何图形,既要看到所画出的图形,又要想到未画出的部分。能实现这一些,可使有些问题一眼看穿。

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。