编辑:
2016-10-26
二、填空题
7.已知等差数列{an},an=4n-3,则首项a1为__________,公差d为__________.
解析:由an=4n-3,知a1=4×1-3=1,d=a2-a1=(4×2-3)-1=4,所以等差数列{an}的首项a1=1,公差d=4.
答案:1 4
8.在等差数列{an}中,a3=7,a5=a2+6,则a6=__________.
解析:设等差数列的公差为d,首项为a1,则a3=a1+2d=7;a5-a2=3d=6.∴d=2,a1=3.∴a6=a1+5d=13.
答案:13
9.已知数列{an}满足a2n+1=a2n+4,且a1=1,an>0,则an=________.
解析:根据已知条件a2n+1=a2n+4,即a2n+1-a2n=4,
∴数列{a2n}是公差为4的等差数列,
∴a2n=a21+(n-1)•4=4n-3.
∵an>0,∴an=4n-3.
答案:4n-3
三、解答题
10.在等差数列{an}中,已知a5=10,a12=31,求它的通项公式.
解:由an=a1+(n-1)d得
10=a1+4d31=a1+11d,解得a1=-2d=3.
∴等差数列的通项公式为an=3n-5.
11.已知等差数列{an}中,a1
(1)求此数列{an}的通项公式;
(2)268是不是此数列中的项?若是,是第多少项?若不是,说明理由.
解:(1)由已知条件得a3=2,a6=8.
又∵{an}为等差数列,设首项为a1,公差为d,
∴a1+2d=2a1+5d=8,解得a1=-2d=2.
∴an=-2+(n-1)×2
=2n-4(n∈N*).
∴数列{an}的通项公式为an=2n-4.
(2)令268=2n-4(n∈N*),解得n=136.
∴268是此数列的第136项.
12.已知(1,1),(3,5)是等差数列{an}图象上的两点.
(1)求这个数列的通项公式;
(2)画出这个数列的图象;
(3)判断这个数列的单调性.
解:(1)由于(1,1),(3,5)是等差数列{an}图象上的两点,所以a1=1,a3=5,由于a3=a1+2d=1+2d=5,解得d=2,于是an=2n-1.
(2)图象是直线y=2x-1上一些等间隔的点(如图).
(3)因为一次函数y=2x-1是增函数,
所以数列{an}是递增数列.
高二北师大版数学等差数列能力提升题及解析的全部内容就是这些,不知道大家是不是对等差数列的知识有了一个全新的认识呢?
相关链接
标签:高二数学专项练习
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。