编辑:sx_yanxf
2016-06-01
知识需要不断地积累,通过做练习才能让知识掌握的更加扎实,精品学习网高中频道为大家提供了向量与实数相乘同步训练,欢迎阅读。
向量的数乘运算
计算下列各式:
(1)4(a+b)-3(a-b);
(2)3(a-2b+c)-(2a+b-3c);
(3)(a-b)-(2a+4b)+(2a+13b).
思路分析:利用向量的线性运算律计算.
解:(1)4(a+b)-3(a-b)=4a-3a+4b+3b=a+7b.
(2)3(a-2b+c)-(2a+b-3c)
=3a-6b+3c-2a-b+3c=a-7b+6c.
(3)(a-b)-(2a+4b)+(2a+13b)
=a-b-a-b+a+b
=a+b
=0·a+0·b=0+0=0.
计算:(1)3(6a+b)-9;
(2)-2;
(3)2(5a-4b+c)-3(a-3b+c)-7a.
解:(1)原式=18a+3b-9a-3b=9a.
(2)原式=-a-b
=a+b-a-b=0.
(3)原式=10a-8b+2c-3a+9b-3c-7a=b-c.
向量的数乘运算类似于实数运算,先算小括号里面的,再算中括号里面的,将相同的向量看作同类项进行合并.
二、向量共线条件的应用
已知向量e1和e2不共线.
(1)如果=e1+e2,=2e1+8e2,=3(e1-e2),求证:A,B,D三点共线.
(2)欲使ke1+e2和e1+ke2共线,试确定实数k的值.
思路分析:(1)要证A,B,D三点共线,可证,共线(或与共线等);(2)当ke1+e2与e1+ke2共线时,由向量共线的条件知必有ke1+e2=λ(e1+ke2),从而求得k的值.
(1)证明:∵=e1+e2,
=+=2e1+8e2+3e1-3e2
=5(e1+e2)=5,
∴∥.又∵AB∩BD=B,
∴A,B,D三点共线.
(2)解:∵ke1+e2与e1+ke2共线,
∴存在λ使ke1+e2=λ(e1+ke2),
则(k-λ)e1=(λk-1)e2.
由于e1与e2不共线,
只能有
则k=±1.
已知向量a=2e1-3e2,b=2e1+3e2,其中e1,e2不共线,向量c=2e1-9e2,问是否存在这样的实数λ,μ,使d=λa+μb与c共线?
解:∵d=λa+μb
=λ(2e1-3e2)+μ(2e1+3e2)
=(2λ+2μ)e1+(-3λ+3μ)e2,
要使d与c共线,则应存在实数k,使d=kc,
即(2λ+2μ)e1+(-3λ+3μ)e2=2ke1-9ke2,
∴∴λ=-2μ.
故存在这样的实数λ,μ,只要λ=-2μ,就能使d与c共线.
1.若b=λa(λ∈R),则b与a共线.由此可以判断向量共线问题.若b与a(a≠0)共线,则必存在唯一实数λ,使b=λa.据此可以求两个共线向量中的系数问题.
2.用向量证明三点共线时,关键是能否找到一个实数λ,使得a=λb(a,b为这三点构成的其中任意两个向量).证明步骤是先证明两个向量共线,然后再由两个向量有公共点,证得三点共线.
三、向量线性运算的应用
=a,=b为边的平行四边形.又BM=BC,CN=CD,试用a,b表示,,.
思路分析:利用向量加法的平行四边形法则、三角形法则以及减法的三角形法则对向量进行分解,同时结合向量的数乘运算将未知向量用a,b表示.===(-)=(a-b),
标签:高一数学专项练习
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。