编辑:
2014-06-04
一般地,如果,那么叫做的次方根(n th root),其中>1,且∈*.
当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.
式子叫做根式(radical),这里叫做根指数(radical exponent),叫做被开方数(radicand).
当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).
由此可得:负数没有偶次方根;0的任何次方根都是0,记作.
思考:(课本P58探究问题)=一定成立吗?.(学生活动)
结论:当是奇数时,
当是偶数时,
例1.(教材P58例1).
解:(略)
巩固练习:(教材P58例1)
2.分数指数幂
正数的分数指数幂的意义
标签:高一数学教案
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。