编辑:sx_gaohm
2016-01-06
人类的每一次重大进步背后都是数学在后面强有力的支撑。精品小编准备了高三数学等比数列教案,具体请看以下内容。
整体设计
教学分析
等比数列与等差数列在内容上是完全平行的,包括定义、性质、通项公式等,两个数的等差(等比)中项、两种数列在函数角度下的解释等,因此在教学时要充分利用类比的方法,以便于弄清它们之间的联系与区别.
等比数列是另一个简单常见的数列,研究内容可与等差数列类比,这是本节的中心思想方法.本节首先归纳出等比数列的定义,导出通项公式,进而研究图象,又给出等比中项的概念,最后是通项公式的应用.
等比数列概念的引入,可按教材给出的几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义.也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,由此对比地概括等比数列的定义.根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解.启发学生用函数观点认识通项公式,由通项公式的结构特征联想到指数函数进而画出数列的图象.
由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,充分利用类比思想,教师只需把握课堂的节奏,真正作为一节课的组织者、引导者出现,充分发挥学生的主体作用.
大量的数学思想方法渗透是本章的特色,如类比思想、归纳思想、数形结合思想、算法思想、方程思想、一般到特殊的思想等,在教学中要充分体现这些重要的数学思想方法,所有能力的体现最终归结为数学思想方法的体现.
三维目标
1.通过实例,理解等比数列的概念;探索并掌握等比数列的通项公式、性质,能在具体的问题情境中,发现数列的等比关系,提高数学建模能力;体会等比数列与指数函数的关系.
2.通过现实生活中大量存在的数列模型,让学生充分感受到数列是反映现实生活的模型,体会数学是丰富多彩的而不是枯燥无味的,达到提高学生学习兴趣的目的.
3.通过对等 比数列概念的归纳,进一步培养学生严密的思维习惯和严谨的科学态度.体会探究过程中的主体作用及探究问题的方法,经历解决问题的全过程.
重点难点
教学重点:掌握等比数列的定义;理解等比数列的通项公式及推导.
教学难点:灵活应用等比数列的定义及通项公式解决相关问题,在具体问题中抽象出等比数列模型及掌握重要的数学思想方法.
课时安排
2课时
教学过程
第1课时
导入新课
思路1.(情境引入)将一张厚度为0.044 mm的白纸一次又一次地对折,如果对折1 000次(假设是可能的),纸的厚度将是4.4×10296 m,相当于约5.0×10292个珠穆朗玛峰的高度和,这可能吗?但是一位数学家曾经说过:你如果能将一张报纸对折38次,我就能顺着它在今天晚上爬上月球.将一张报纸对折会有那么大的厚度吗?这就是我们今天要解决的问题,让学生带着这大大的疑问来展开新课.
思路2.(实例导入)先给出四个数列:
1,2,4,8,16,……
1,-1,1,-1,1,……
-4,2,-1,……
1,1,1,1,1,……
由学生自己去探究这四个数列,每个数列相邻两项之间有什么关系?这四个数列有什么共同点?让学生观察这些数列与上节课学习的等差数列有什么不同?由此引入新课.
推进新课
新知探究[来源:Zxxk.Com]
提出问题
1回忆等差数列的概念及等差数列的通项公式的推导方法.
2阅读课本本节内容的①②③3个背景实例,领会三个实例所传达的思想,写出由3个实例所得到的数列.
3观察数列①②③,它们有什么共同的特征?你能再举出2个与其特征相同的数列吗?
4类比等差数列的定义,怎样用恰当的语言给出等比数列的定义?[来源:Zxxk.Com]
5类比等差中项的概念,你能说出什么是等比中项吗?它与等差中项有什么不同?
6你能举出既是等差数列又是等比数列的例子吗?
7类比等差数列通项公式的推导过程,你能推导出等比数列的通项公式吗?
8类比等差数列通项公式与一次函数的关系,你能说明等比数列的通项公式与指数函数的关系吗?
活动:教师引导学生回忆等差数列概念的学习过程,指导学生阅读并分析教科书中给出的3个实例.
引导学生发现数列①②③的共同特点:
对于数列①,从第2项起,每一项与前一项的比都等于2;
对于数列②,从第2项起,每一项与前一项的比都等于3;
对于数列③,从第2项起,每一项与前一项的比都等于-12.
也就是 说,这些数列有一个共同的特点:从第2项起,每一项与前一项的比都等于同一常数,这里仍是后项比前项,而不是前项比后项,具有这样特点的数列我们称之为等比数列.让学生类比等差数列给出等比数列的定义:
一般地,如果一个数列,从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列就叫做等比数列.
这个常数叫做等比数列的公比,公比通常用字母q表示,显然q≠0,上面的三个数列都是等比数列,公比依次是2,3,-12.
①给出等比数列的定义后,让学生尝试用递推公式描述等比数列的定义,即a1=a,an+1=an•q(n=1,2,3,…).
②再让学生思考既是等差数列,又是等比数列的数列存在吗?学生思考后很快会举出1,1,1,…既是等比数列也是等差数列,其公比为1,公差为0.
教师可再提出:常数列都是等比数列吗?让学生充分讨论后可得出0,0,0,…是常数列,但不是等比数列.
③至此,学生已经清晰了等比数列的概念,比如,从等比数列定义知,等比数列中的任意一项不为零,公比可以为正,可以为负,但不能为0.
④类比等差中项的概念,我们可得出等比中项的概念:如果三个数x,G,y组成等比数列,则G叫做x和y的等比中项.如果G是x和y的等比中项,那么Gx=yG,即G2=xy,G=±ab.因此同号的两个数的等比中项有两个,它们互为相反数,一个正数和一个负数没有等比中项.显然,在一个等比数列中,从第2项起,每一项(有穷数列末项除外)都是它的前一项与后一项的等比中项;反之,如果一个数列从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后 一项的等比中项,那么这个数列是等比数列.
课件演示:不完全归纳法得到等差数列通项公式的过程:
a2=a1+d,
a3=a2+d=(a1+d)+d=a1+2d,
a4=a3+d=(a1+2d)+d=a1+3d,
……
归纳得到an=a1+(n-1)d.
类比这个过程,可得等比数列通项公式的归纳过程如下:
a2=a1q,
a3=a2q=(a1q)q=a1q2,
a4=a3q=(a1q2)q=a1q3,
……
归纳得到an=a1qn-1.
这样做可以帮助学生体会归纳推理对于发现新的数学结论的作用.这个结论的正确性可用后面的数学归纳法进行严格证明,现在我们先承认它.
下面我们再类比等差数列,探究推导等比数列通项公式的其他方法:
∵{an}是等比数列,
∴anan-1=q,an-1an-2=q,an-3an-4=q,…,a2a1=q.
把以上n-1个等式两边分别乘到一起,即叠乘,则可得到
ana1=qn-1,
于是得到an=a1qn-1.
对于通项公式,教师引导学生明确这样几点:
(1)不要把公式错误地写成an=a1qn.
(2)对公比q,要和等差数列的公差一样,强调“从第2项起,每一项与它的前一项的比”,不要把相邻两项的比的次序颠倒,且公比q可以为正,可以为负,但不能为0.
(3)在等比数列a,aq,aq2,aq3,…中,当a=0时,一切项都等于0;当q=0时,第二项以后的项都等于0,这不符合等比数列的定义.因此等比数列的首项和公比都不能为0.
(4)类比等差数列中d>0,d<0时的情况,若q>0,则相邻两项符号同号,若q<0,则各项符号异号;若q=1,则等比数列为非零常数列;若q=-1,则为如2,-2,2,-2,…这样的数列;若|q|<1,则数列各项的绝对值递减.
最后让学生完成下表,从定义、通项公式比较等差数列、等比数列的异同,加深概念的理解.
等差数列 等比数列
定义 从第2项起,每一项与它前一项的差都是同一个常数 从第2项起,每一项与它前一项的比都是同一个常数
首项、公差(公比)取值有无限制 没有任何限制 首项、公比都不能为0
通项公式 an=a1+(n-1)d an=a1q n-1
讨论结果:(1)~(3)略.
(4)等比数列定义:如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列就叫做等比数列.
(5)并不是所有的两个数都有等比中项.
(6)除0外的常数列既是等差数列,又是等比数列.
(7)(8)略.
应用示例
标签:高三数学教案
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。