编辑:sx_yanxf
2016-09-22
提前做好教学规划,可以帮助教师理清新课时的教学思路,进而提高课堂效率。以下是精品学习网为老师提供的高三数学数列教案设计,希望在老师的教学中能够有所帮助。
整体设计
教学分析
本节教材通过举例引出数列概念,教材上列举了7个例子,这7列数的排列都具有一定的规律,教学时也可举几个各项数是随机的 、没有什么规律的例子.注意函数定义域的表述.符号N+与N*表示正整数或非0自然数.教材中的例1可由学生自己完成.例2中的3个小题都要通过观察并分析数的性质,有一定难度.例3是为了加强数列与函数的联系,教学时要重视.
对数列概念的引入可作适当拓展.一方面从研究数的角度提出数列概念,使学生感受数列是刻画自然规律的基本数学模型;另一方面可从生活实际引入,如银行存款利息、购房贷款等,使学生对这些现象的数学背景有更直观认识,感受数列研究的现实意义,以激发学生学习数列的兴趣.
(1)教学中要注意留给学生回味、思考的空间和余地.
(2)数列是一种特殊函数,其定义域是正整数集N*(或它的有限子集),值域是当自变量顺次从小到大依次取值时的对应值.教科书通过数列的定义域与值域之间这种一一对应关系的列表,让学生加深对数列是一种特殊函数的认识.
(3)对于函数y=f(x),如果f(i)(i=1,2,3,…)有意义,这些函数值也可以组成一个数列,教学中要注意数列与函数的这种关系的把握.
教材上对数列进行了两种分类:有穷数列,无穷数列;递增数列,递减数列,常数列,摆动数列.这些分类的严格定义不要求学生记忆,只要学生知道上述分类是依据不同分类标准得出的并能对所给数列的类别作出准确判断就可以了.
三维目标
1.通过本节学习,让学生理解数列的概念,理解数列是一种特殊函数,把数列融于函数之中;了解数列的通项公式,并会用通项公式写出数列的任意一项,对于比较简单的数列,会根据其前几项写出它的通项公式.
2.通过探究、思考、交流、实验、观察、分析等教学方式,充分发挥学生的主体作用,并通过日常生活中的大量实例,鼓励学生动手试验,大胆猜想.培养学生对科学的探究精神和严肃认真的科学态度.
3.通过本节章头图的学习,体会数学来源于生活,理解大自然的丰富多彩,感受“大自然是懂数学的”,从而提高学生学习数学的兴趣.
重点难点
教学重点:理解数列及其有关的概念,了解数列通项公式的意义;了解数列和函数之间的关系.
教学难点:根据数列的前几项,归纳出数列的通项公式.
课时安排
1课时
教学过程
导入新课
思路1.(章头图引入)斐波那契(Fibonacci Leonardo,约1170~1250),意大利著名数学家,保存至今的斐波那契著作有5部,其中影响最大的是1202年在意大利出版的《算盘全书》,《算盘全书》中许多有趣的问题中最富成功的问题是著名的兔子繁殖问题:如果每对兔子每月繁殖一对子兔(一雌一雄),而子兔在出生后第三个月里就又能生1对子兔.试问一对兔子50个月会有多少对兔子?由此展开新课的探究.
思路2.(直接引入)利用多媒体打出教材前言中的几列数.这是与集合中的元素不同的一列数,有一定的次序,告诉学生这就是我们要研究的数列,由此直接进入新课.
推进新课
新知探究
提出问题
1阅读课本章头图,列出前5个月中每个月兔子的总对数.
2每个同学取一张纸对折,假设纸的原来厚度为1个长度单位,面积为1个面积单位,那么随着依次对折的次数增加,它的厚度和每层纸的面积分别是多少?
3怎样理解数列?与集合有什么不同?什么是数列的项?怎样表示数列a1,a2,a3,…,an,…?
4你能举出身边的哪些数列?
5怎样对数列分类?什么是有穷数列?什么是递增数列?
6怎样理解数列与函数的关系?
7什么是数列的通项公式?
8数列有哪些简单的表示方法?
标签:高三数学教案
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。