编辑:
2014-07-01
【当堂反馈】
1.关于合力的下列叙述中正确的是 ( )
A.合力的性质同原来的两个力的性质相同 B.合力是原来几个力的等效代替
C.合力也有施力物体与受力物体 D.合力随两个力之间夹角的增大而减小
2.两个共点力的大小分别为Fl=15 N,F2=9N,它们的合力可能为 ( )
A.9 N B.25 N C.5 N D.21 N
3.从匀速上升的气球上抛出一个 重为G的物体,若气球所受的浮力f不变,则抛出物体后气球所受的合力大小为( )
A.f B.G C.0 D f+G:
4.如图3-22所示,是两个共点力的合力,跟它的两个分力之间的夹角θ的关系图象,则这两个力的 大小分别是 ( )
A.1 N和4 N B.2 N和3 N C.1 N和5 N D.2 N和4 N
5.如图3—23所示,A、B分别为甲、乙两位同学在做本实验时得到的结果,可以断定其中___________同学的实验结果比较符合实验事实,理由是________________
6.将橡皮筋的一端固定在A点,另一端拴上两根细绳,每根细绳分别连着一个量程为5 N、最小刻度为0.1 N的弹簧测力计,沿着两个不同的方向拉弹簧测力计.当橡皮筋的活动端拉到O点时,两根细绳相互垂直,如图3-24所示,这时弹簧测力计的读数可从图中读出:
(1)由图中可读得两个相互垂直的拉力的大小分别为______N和________N(只须读到0.1 N).
(2)在本题的虚线方格纸上按作图法的要求画出这两个力及它们的合力.
【参考答案】
1、B 2、AD 3、B 4、B
5、甲 F‘与橡皮筋在同一条直线上
6.2.5 4.0
【反思】
收
获
疑
问
3.4 力的合成和分解
教学目标:
1.理解合力、分力的概念,掌握矢量合成的平行四边形定则。
2.能够运用平行四边形定则或力三角形定则解决力的合成与分解问题。
3.进一步熟悉受力分析的基本方法,培养学生处理力学问题的基本技能。
教学重点:力的平行四边形定则
教学难点:受力分析
教学方法:讲练结合,计算机辅助教学
教学过程:
一、标量和矢量
1.将物理量区分为矢量和标量体现了用分类方法研究物理问题的思想。
2.矢量和标量的根本区别在于它们遵从不同的运算法则:标量用代数法;矢量用平行四边形定则或三角形定则。
矢量的合成与分解都遵从平行四边形定则(可简化成三角形定则)。平行四边形定则实质上是一种等效替换的方法。一个矢量(合矢量)的作用效果和另外几个矢量(分矢量)共同作用的效果相同,就可以用这一个矢量代替那几个矢量,也可以用那几个矢量代替这一个矢量,而不改变原来的作用效果。
3.同一直线上矢量的合成可转为代数法,即规定某一方向为正方向。与正方向相同的物理量用正号代入.相反的用负号代入,然后求代数和,最后结果的正、负体现了方向,但有些物理量虽也有正负之分,运算法则也一样.但不能认为是矢量,最后结果的正负也不表示方向如:功、重力势能、电势能、电势等。
二、力的合成与分解
力的合成与分解体现了用等效的方法研究物理问题。
合成与分解是为了研究问题的方便而引人的一种方法。用合力来代替几个力时必须把合力与各分力脱钩,即考虑合力则不能考虑分力,同理在力的分解时只考虑分力而不能同时考虑合力。
1.力的合成
(1)力的合成的本质就在于保证作用效果相同的前提下,用一个力的作用代替几个力的作用,这个力就是那几个力的“等效力”(合力)。力的平行四边形定则是运用“等效”观点,通过实验总结出来的共点力的合成法则,它给出了寻求这种“等效代换”所遵循的规律。
(2)平行四边形定则可简化成三角形定则。由三角形定则还可以得到一个有用的推论:如果n个力首尾相接组成一个封闭多边形,则这n个力的合力为零。
(3)共点的两个力合力的大小范围是
|F1-F2| ≤ F合≤ F1+F2
(4)共点的三个力合力的最大值为三个力的大小之和,最小值可能为零。
【例1】物体受到互相垂直的两个力F1、F2的作用,若两力大小分别为5 N、5 N,求这两个力的合力.
解析:根据平行四边形定则作出平行四边形,如图所示,由于F1、F2相互垂直,所以作出的平行四边形为矩形,对角线分成的两个三角形为直角三角形,由勾股定理得:
N=10 N
合力的方向与F1的夹角θ为:
θ=30°
2.力的分解
(1)力的分解遵循平行四边形法则,力的分解相当于已知对角线求邻边。
(2)两个力的合力惟一确定,一个力的两个分力在无附加条件时,从理论上讲可分解为无数组分力,但在具体问题中,应根据力实际产生的效果来分解。
【例2】将一个力分解为两个互相垂直的力,有几种分法?
解析:有无数种分法,只要在表示这个力的有向线段的一段任意画一条直线,在有向线段的另一端向这条直线做垂线,就是一种方法。如图所示。
(3)几种有条件的力的分解?
①已知两个分力的方向,求两个分力的大小时,有唯一解。
②已知一个分力的大小和方向,求另一个分力的大小和方向时,有唯一解。
③已知两个分力的大小,求两个分力的方向时,其分解不惟一。
④已知一个分力的大小和另一个分力的方向,求这个分力的方向和另一个分力的大小时,其分解方法可能惟一,也可能不惟一。
(4)用力的矢量三角形定则分析力最小值的规律:
①当已知合力F的大小、方向及一个分力F1的方向时,另一个分力F2取最小值的条件是两分力垂直。如图所示,F2的最小值为:F2min=F sinα
②当已知合力F的方向及一个分力F1的大小、方向时,另一个分力F2取最小值的条件是:所求分力F2与合力F垂直,如图所示,F2的最小值为:F2min=F1sinα?
③当已知合力F的大小及一个分力F1的大小时,另一个分力F2取最小值的条件是:已知大小的分力F1与合力F同方向,F2的最小值为|F-F1|
(5)正交分解法:?
把一个力分解成两个互相垂直的分力,这种分解方法称为正交分解法。
用正交分解法求合力的步骤:
①首先建立平面直角坐标系,并确定正方向
②把各个力向x轴、y轴上投影,但应注意的是:与确定的正方向相同的力为正,与确定的正方向相反的为负,这样,就用正、负号表示了被正交分解的力的分力的方向
③求在x轴上的各分力的代数和Fx合和在y轴上的各分力的代数和Fy合
④求合力的大小
合力的方向:tanα= (α为合力F与x轴的夹角)
标签:高一物理教案
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。