您当前所在位置:首页 > 高中 > 说课稿 > 高二数学说课稿

高二《导数的概念》数学说课稿

编辑:sx_mengxiang

2014-09-20

为了帮助老师们能够更好地讲课,精品学习网精心为大家搜集整理了“《导数的概念》数学说课稿”,希望对大家的数学教学有所帮助!

一、教材分析

导数的概念是高中新教材人教A版选修2-2第一章1.1.2的内容, 是在学生学习了物理的平均速度和瞬时速度的背景下,以及前节课所学的平均变化率基础上,阐述了平均变化率和瞬时变化率的关系,从实例出发得到导数的概念,为以后更好地研究导数的几何意义和导数的应用奠定基础。

新教材在这个问题的处理上有很大变化,它与旧教材的区别是从平均变化率入手,用形象直观的“逼近”方法定义导数。

问题1 气球平均膨胀率--→瞬时膨胀率

问题2 高台跳水的平均速度--→瞬时速度

--→

根据上述教材结构与内容分析,立足学生的认知水平 ,制定如下教学目标和重、难点

二、 教学目标

1、 知识与技能:

通过大量的实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数。

2、 过程与方法:

① 通过动手计算培养学生观察、分析、比较和归纳能力

② 通过问题的探究体会逼近、类比、以已知探求未知、从特殊到一般的数学思想方法

3、 情感、态度与价值观:

通过运动的观点体会导数的内涵,使学生掌握导数的概念不再困难,从而激发学生学习数学的兴趣.

三、 重点、难点

 重点:导数概念的形成,导数内涵的理解

 难点:在平均变化率的基础上去探求瞬时变化率,深刻理解导数的内涵

通过逼近的方法,引导学生观察来突破难点

四、 教学设想(具体如下表)

教学环节 教学内容 师生互动 设计思路

创设情景

引入新课

幻灯片

 回顾上节课留下的思考题:

在高台跳水运动中,运动员相对水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)=-4.9t 2+6.5t+10.计算运动员在 这段时间里的平均速度,并思考下面的问题:

(1)运动员在这段时间里是静止的吗?

(2)你认为用平均速度描述运动员的运动状态有什么问题吗?

首先回顾上节课留下的思考题:

在学生相互讨论,交流结果的基础上,提出 :大家得到运动员在这段时间内的平均速度为“0”,但我们知道运动员在这段时间内并没有“静止”。为什么会产生这样的情况                                                                                                                                                                                                       呢?

引起学生的好奇,意识到平均速度只能粗略地描述物体在某段时间内的运动状态,为了能更精确地刻画物体运动,我们有必要研究某个时刻的速度即瞬时速度。

使学生带着问题走进课堂,激发学生求知欲

根据学生的认知水平,概念的形成分了两个层次:

 结合跳水问题,明确瞬时速度的定义

问题一:请大家思考如何求运动员的瞬时速度,如t=2时刻的瞬时速度?

提出问题一,组织学生讨论,引导他们自然地想到选取一个具体时刻如t=2,研究它附近的平均速度变化情况来寻找到问题的思路,使抽象问题具体化

理解导数的内涵是本节课的教学重难点,通过层层设疑,把学生推向问题的中心,让学生动手操作,直观感受来突出重点、突破难点

问题二:请大家继续思考,当Δt取不同值时,尝试计算 的值?

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。