您当前所在位置:首页 > 论文 > 理学论文 > 统计学论文

论朴素贝叶斯分类在入侵检测中的应用

编辑:sx_yangk

2015-11-02

在入侵检测系统中,为了提高系统的性能,包括降低误报率和漏报率,缩短反应时间等,学者们引入了许多方法, 详细内容请看下文朴素贝叶斯分类在入侵检测中的应用

专家系统、神经网络、遗传算法和数据挖掘中的聚类,分类等各种算法。例如:Cooper & Herkovits提出的一种基于贪心算法的贝叶斯信念网络,而Provan & Singh Provan,G.M & Singh M和其他学者报告了这种方法的优点。贝叶斯网络说明联合条件概率分布,为机器学习提供一种因果关系的图形,能有效的处理某些问题,如诊断:贝叶斯网络能正确的处理不确定和有噪声的问题,这类问题在任何检测任务中都很重要。

然而,在分类算法的比较研究发现,一种称作朴素贝叶斯分类的简单贝叶斯算法给人印象更为深刻。尽管朴素贝叶斯的分类器有个很简单的假定,但从现实数据中的实验反复地表明它可以与决定树和神经网络分类算法相媲美[1]。

在本文中,我们研究朴素贝叶斯分类算法,用来检测入侵审计数据,旨在开发一种更有效的,检验更加准确的算法。

贝叶斯分类器

贝叶斯分类是统计学分类方法。它们可以预测类成员关系的可能性,如给定样本属于一个特定类的概率。

朴素贝叶斯分类假定了一个属性值对给定类的影响独立于其它属性的值,这一假定称作类条件独立。

设定数据样本用一个 n 维特征向量X={x1,x2xn}表示,分别描述对n 个属性A1,A2An样本的 n 个度量。假定有m个类 C1,C2Cm 。给定一个未知的数据样本 X(即没有类标号),朴素贝叶斯分类分类法将预测 X 属于具有最高后验概率(条件 X 下)的类,当且仅当P(Ci | X) P(Cj | X),1≤j≤m,j≠i 这样,最大化P(Ci | X)。其中P(Ci | X)最大类Ci 称为最大后验假定,其原理为贝叶斯定理:

标签:统计学论文

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。