您当前所在位置:首页 > 论文 > 证劵金融 > 期货市场论文

关于期货套期保值决策模型的发展

编辑:

2016-09-05

3 非线性均值-方差模型的进一步发展

在套期保值决策中,有一类对较大风险厌恶的决策者。他们的决策特点是:在风险较小的时候,有投机的欲望;而在风险较大的情形下,则只专注于套期保值。由于这种决策效用的特殊性,本文试图建立一个更为一般的非线性均值-方差模型对此进行研究。以一个多年生产谷物的农场主为例,模型建立

EU(l)=■(8)

3.1 模型的特点

第一,在模型中,要使农场主的期望效用EU(l)达到最大,应使预测回报率E(l)尽可能大,而相应的风险Var(l)尽可能小。符合实际情况。第二,当农场主完全不厌恶风险,即风险厌恶为零时(此时农场主是期货市场的投机者),有EU(l)=E(l),与线性模型一致。第三,由■=-(■)=■π0得,等量的预期回报率E(l)增加带来递减的效用EU(l)增量(见图4)对该农场主来说,随着风险的增大,在风险小的时候,效用增量的幅度变化不大;但是在风险较大时,要达到同等的效用,需要的期望报酬增量在显着增大;在风险很大的时候,微小的风险增量需要很大的期望报酬增量才能达到同等的效用。可见,该农场主在风险很小时,有投机的欲望;而在风险较大时,则极其规避风险。相对于非线性模型(7)的等效用线来说(见图3),该模型更能刻画他对较大风险的规避特征。

3.2 模型的求解

沿袭前述线性模型的求解方法,令EU(l)对n偏倒数为0,得:

■=

■=■=0(9)

则有:

2λσ2fE(f)n2-[2λσ2fE(S)+2λσsfE(f)]n+2λσsfE(S)-E(f)=0(10)

在(10)式中,若E(f)=0,且风险厌恶系数λ≠0,则最优套期保值比为n=σsfσ2f,跟线性模型E(f)=0的情况一致,此乃农场主在完全不投机下的最优保值策略。若E(f)=0且λ=0,此时农场主的期望效用只与现货价格的预期变化E(s)有关,而与套保比例n无关。若E(f)≠0且λ=0,则(10)式无解,这与上述非线性模型(7)的情况一致,这是一种极度投机的情况。若λ≠0且E(f)≠0(实际情况大多如此,农场主厌恶风险且预测期货市场上谷物价格会有波动),则(10)式化简为:

n2-(■+■)n+■-■=0(11)

由判别式

△=(■+■)2+■+■

=(■+■)2+■?准0(12)

得此时有两个实数解

n1,2=■(13)

该结果即是该农场主在大多情况下采用的最优套保比值。同时可以看出,最优套保比值跟农场主对期货价格预测E(f),现货价格预测E(s)均有关系,在此,该农场主可以把自己对现货市场的知识运用到决策中去。下面对两个解的两种极端情况进行讨论:

(1)当期货与现货市场上谷物的价格完美关联(即s=f,E(s)=E(f),σsf=σ2f=σ2s),且农场主极度厌恶风险(λ→∞)时,△=0,此时(11)式化简为n2-2n+1=0;

得出农场主的最优套保比

n=1(14)

此时该模型就退化为传统(等额)套期保值模型。

(2)当期货与现货市场上谷物的价格完美关联,农场主保值者的风险厌恶度适中(λ即不为0也不为∞)时,(11)式化简为:

n2+2n+1-12λσ2f=0,(15)

n1,2=1±1■(16)

将(16)式代回(8)式计算得

EU(l)=μ■(17)

(3)当预测现货市场谷物的价格上升(E(s)φ0)时,说明现货头寸有利,农场主此时会相应减少一个保值分量1■σS,即取套期保值比为n=1-1■σS;

此时通过套期保值得到的最大期望效用

EU(l)=■(18)

(4)当预测现货市场谷物的价格下跌(E(s)π0)时,说明期货头寸有利,农场主会在等额保值的基础上增加一个分量1■σS,即取套期保值比为n=1+

1■σS;

此时,通过套期保值得到的最大期望效用

EU(l)=■(19)

该结果符合实际,因为大多情况下,期货价格在一个严格规范的期货市场上有时会高于现货价格有时则低于现货价格(即期货溢价和期货市场倒挂的情况都可能出现),农场主不会相信期货市场不会出现倾斜。农场主也是理性行为者,他在进行保值操作时将基于价格预期决定持仓量,除了套期保值外,如果有投机的机会,他也会投机。于是他的净期货交易就反映出他在保险欲望和投机收益之间的权衡。

4 结语

在回顾套期保值决策模型的基础上,对非线性均值-方差模型作了进一步的推广,以一个多年从事谷物生产的农场主为例来说明怎样实施该套期保值过程。它比已有的非线性线性模型能更准确地刻画对较大风险厌恶的这样一类决策者的决策特征(文中的农场主只是一个特例),在风险小会充分考虑投机,以期获得额外的收益;在风险大时则只专注于套期保值。但是,跟前述所有的模型一样,在实际决策过程中,人的主观看法、信息获取的情况、情感等非理性因素往往对决策结果有很大影响,这里该模型没有涉及。

参考文献

1 周洛华.中级金融工程学[M].上海:上海财经大学出版社,2005

2 朱国华,褚玦海.期货市场学[M].上海:上海财经大学出版社,2005

3 黄长征.期货套期保值决策模型研究[J].数量经济技术经济研究,2004(7)

4 董雪梅. 金融衍生工具避险功能探析[J]. 哈尔滨金融高等专科学校学报,2006(20)

那么关于期货套期保值决策的内容就介绍到这了,更多精彩请大家持续关注我们网站。

相关推荐:

关于期货市场经济功能研究  

论期货业亏损的制度性解释  

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。