您当前所在位置:

高分子化学学习技巧探究

2012-09-26

【编者按】:化学论文是科技论文的一种是用来进行化学科学研究和描述研究成果的论说性文章。精品学习网论文网为您提供化学论文范文参考,以及论文写作指导和格式排版要求,解决您在论文写作中的难题。

一、高分子化学及相关知识领域简介

高分子化学是研究高分子化合物合成和反应的一门科学,根据性能的要求、性能和结构的关系,进行高分子的设计和合成,同时为合成预定结构的聚合物,研究聚合原理、聚合方法、寻找引发剂等是分子化学的任务。目前高分子学科正向纵深扩展:在聚合反应、聚合方法方面、有基团转移聚合、开环移位聚合、微生物方法聚合、天然酶催化聚合;在功能高分子方面,有反应分离膜、液晶态高分子、生物活性高分子、医用高分子,以及各种具有光学(非线性光学)、电学、磁学性能的聚合物;在天然高分子方面,有天然高分子的构成、改性及作为材料的使用等等。

高分子化学内容包括:

①聚合反应、聚合原理,根据聚合机理和动力学的不同聚合反应分类如下:连锁聚合和逐步聚合。连锁聚合包括自由基型聚合(自由基均聚、自由基共聚)、离子型聚合(阴、阳离子聚合,离子型共聚)、配位聚合(属于离子聚合范畴,大多为阴离子聚合)。逐步聚合包括均聚缩、杂缩聚、共缩聚。

②聚合方法:本体聚合、溶液聚合、悬浮聚合、乳液聚合,逐步聚合及界面缩聚。悬浮乳液聚合只用于自由基型聚合反应,所用引发剂分别是油溶性和水溶性的,本体聚合、溶液聚合只用于自由基、离子型聚合及逐步聚合但水不能作为离子在溶液中聚合的溶剂,界面缩聚只用于逐步聚合,各种聚合方法中,聚合体系的组成配方、各组分作用、聚合过程,体系的粘度、散热及温度控制的难易,聚合速度、链转移反应、分子量及其分布等是不同聚合方法主要关注的内容。

③聚合热力学:单体能否聚合须从热力学和动力学两方面考虑,若热力学上有聚合的可能,再进一步寻找引发剂、温度等动力学条件解决聚合速度问题。从热力学角度分析单体聚合的倾向。可通过聚合热、聚合的上限温度等的估算和分析。

④聚合物的化学转变:相似转变,聚合度变大的转变(交联、接枝、嵌段、扩链),聚合物降解。

二、高分子化学学习方法

一般而言,对某门课程的学习一方面是各知识单元能否从共同角度去学习和掌握,另一方面是就某一层面、某一角度进行比较和综合。比较是为了避免知识的割裂和混淆,综合则有一个学习认识上的上升过程,通过综合获得解题能力、获得该门课的基本思想及一般思考方法。同样地,高分子化学的各聚合反应也可从几个共同的方面去学习和掌握:

1.各聚合反应研究的重要的问题、主要的控制目标

对于均聚反应(自由基型或离子型),研究的重要内容是聚合速度、平均分子量、分子量分布。而共聚反应则主要集中在共聚物的组成(平均组成、瞬时组成)、组成分布、序列分布。对于配位聚合主要是立构规整性问题,寻找高效络合引发体系,合成预定立构规整聚合物是配位聚合的任务。对于缩聚反应,聚合速度、分子量控制是线型缩聚的核心问题,凝胶点的控制则是体型缩聚的关键问题。

2.各聚合应机理及聚合特点

自由基聚合:聚合机理的特征为慢引发、快增长、有终止。活性中心是碳自由基,增长反应、向单体、溶剂、引发剂的链转移反应相互竞争,引发速率最小(Ed=105~150KJ/mol,R1=10-8~10-10mol/L·s),反应为引发控制,Rp比Rt大3~5个数量级,反应达到一定的转化率(15%~20%)后,由于凝胶效应会产生自动加速现象,并使分子量增加。自由基聚合时,单体一经引发便很快增长成高分子聚合物,不能停留在中间聚合度阶段,体系始终由单体、高分子聚合物和微量引发剂组成,并且在不同转化率下分离得到的聚合物分子量差别不大。

阳离子聚合:聚合机理的特征为快引发(E1=8.4~21KJ/mol)、快增长(Ep=8.4~21KJ/mol,与自由基聚合增长活化能属同一数量级,由于kt很小、活性种浓度高因而聚合速度要快得多)、易转移、难终止。活性中心是碳阳离子,碳阳离子不能双分子终止,因而无自动加速现象。增长、增长链的分子内重排(氢转移聚合或异构化聚合)、链转移、单基终止相互竞争,阳离子聚合反应时向单体的链转移(CM=10-2~10-4)比自由基聚合时(CM=10-4~10-5)要大得多,且真正的动力学终止比较稀少。活性中心碳阳离子总是与反离子形成离子对,离子对的紧密程度对聚合速度、平均分子量会产生影响。

阴离子聚合:聚合机理的特征为快引发、慢增长(较引发慢而言)、难转移、无终止。活性中心是碳阴离子,碳阴离子增长速率比自由基还快(由于无终止以及阴离子增长种浓度10-3~10-2mol/L比自由基10-9~10-7mol/L大)。引发快于增长,即聚合开始前引发剂已定量离解成活性中心([M]=引发剂浓度),阴离子活性中心几乎同时增长,增长的几率相等,所得聚合物接近单分散性。反离子为金属阳离子,离子对的紧密程度对聚合速度、平均分子量有影响,并影响着链节的构型。

配位聚合:先配位形成σ-π键,然后单体经四元环插入M—R中间而增长。配位引发剂的作用:一是提供阴离子活性种,二是使单体定位并以一定构型进入增长链。引发剂络合中心构型、单体的配位方式及单体和络合中心形成中间体的稳定性决定着各聚合物构型及相对含量。逐步聚合:逐步和平衡,反应无特定活性种,任何带不同官能团的两组份(单体、低聚物)之间均能缩合(连锁聚合中,活性中心只与单体作用,单体相互间或与聚合物间均不反应),反应可停留在中等聚合度阶段,两单体非等量或低温可使缩聚暂停。

3.影响聚合反应的因素及影响规律

不同的聚合反应,其主要的研究内容及控制目标各不相同。了解影响它们的因素及规律,为实验控制提供依据和指导。

①自由基均聚合

聚合速度(RP):单体浓度、引发剂浓度越大,温度越高,RP越大。选择Ed较低的引发剂,可显著加速反应,引发剂种类的选择和用量的确定是控制聚合速率的主要因素,聚合温度则随引发剂

分解温度而定。

平均分子量(平均聚合度Xn):引发剂浓度、聚合温度也是影响Xn的主要因素,但影响方向却相反,即引发剂浓度越大、温度越高,Xn越小。链转移反应使分子量减小,由于体系中引发剂浓度很低,向引发剂转移而引起聚合度降低比较小。通常选择链转移常数在1左右的化合物作分子量调节剂。

分子量分布:自由基终止方式、凝胶效应对分子量分布均有影响。歧化终止时Xw/Xn=2,偶合终止时Xw/Xn=1.5,有凝胶效应时Xw/Xn=5~10。聚合物微结构及立体构型:自由基聚合分子链上取代基的排布是无规则的。

聚合条件的选择:聚合控制主要借助对聚合条件的选择,它必须兼顾对聚合速度、平均分子量、分子量分布等方面的影响和效果。自由基均聚时,聚合温度、引发方式、引发剂种类及用量、溶剂、分子量调节剂都是可供选择的因素。以溶剂的选择为例,自由基聚合时,须考虑溶剂对引发剂的诱导分解作用,链自由基对溶剂的链转移反应,溶剂对聚合物溶解性能,凝胶效应等的影响,从而兼顾其对聚合速度、分子量、分子量分布的影响。