这就是先特殊后一般,由特殊证明一般的一个典型例子。这种处理问题的方法是数学分析证明问题的重要思想方法之一。又如,通过归结原则(Heien定理),由数列极限研究函数极限(函数极限存在的Ca、勿准则充分性的证明就是如此,关于化二重积分为累次积分的讨论〔伙首先讨论矩形区域情形,然后讨论一般区域情形),Green公式的证明依次就区域为既是x一型又是y一型的特殊情形、由一条闭曲线围成的较一般情形、不止由一条闭曲线围成的一般情形进行证明等等,它们都体现了由特殊证明一般的思想方法。
然而在有些数学分析问题上,处酮题的方法则必须由一般到特殊。求数项级数
的和直接求是很困难的,但求幕级数的和函数有逐项微分与逐项积分的常用方法,因此可考虑把原数项级数推广为某幕级数,使它成为该幕级数当自变量取某特定值时的特殊情况,通过求幕级数的和函数来求数项级数的和。,可求得s(x)=(x-1)ex+1,从而这就是先一般后特殊,由一般求特殊的典型范例。又如,通过LHospital法则,由函数极限求数列极限,由含参量积分计算定积分与非正常积分等等,都体现了由一般计算特殊的思想方法。另外数学分析概念、理论与方法的应用也体现了由一般到特殊的认识过程,事实上,应用概念、理论与方法解决问题过程的实质就是运用一般与特殊的关系的思想不断地变换问题,连续的简化问题,直到将问题归结为熟知的基本问题或已解决的简单间题,最后加以解决。
1.4数形结合的思想和方法
纯数学研究的基本对象是客观世界的数量关系和空间形式,而数量关系与空间形式之间往往
存在着密切的联系,很多抽象的数学间题都蕴含着某种几何意义。注意发掘、揭示抽象问题所具有的几何模型,对抽象问题进行几何解释,使抽象问题具体化、形象化、直观化。同时借助几何直观,启发解决间题的思路是数学分析中常用思想和方法。比如,极限、导数与微分、二元函数偏导数与全微分、定积分与重积分等的几何意义,对于深入理解、正确掌握这些基本概念是重要的,并且开辟了应用这些基本概念解决各种实际问题的广阔途径(例如应用导数求曲线的切线与法线方程,应用定积分与重积分求面积与体积等等)。又比如,闭区间上连续函数基本性质、微分与积分中值定理的几何解释,不论对定理自身的理解,还是对启发证明其结论的思路都是很有意义的。另外象从几何角度进行隐函数存在条件的分析与结合几何图形进行隐函数存在唯一性定理的证明②那样,借助几何直观,讨论问题、论证问题的例子在数学分析中更是随处可见。
2数学分析中重视数学思想方法教学的几个问题
2.1提高对数学思想方法教学必要性的认识
数学教学之根本目的应是培养和提高学生处理实际间题的能力,为他们提供应用于其它科学
的数学思想和方法,而不是单纯地为了给学生提供求解具体问题的工具。在某种意义上,教给学生数学思想方法,培养学生运用数学思想方法的能力,对提高学生的数学修养与数学思维水平,促进学生智力开发是十分有意义的。
2.2教学中注意数学思想方法的总结与注人
数学分析中,在概念的形成与引入,在理论(定理、法则)的建立与论证,在习题的推导与计算等各个方面都蕴含着丰富的数学思想方法。教学中要有意识地注意数学思想方法的考查、研究与总结。数学教学不能单纯的、形式的看作是定义的介绍、定理的推导、公式的应用,如果这样,那就把数学教学教条化。数学教学中应注意注入数学思想、体现数学方法,才能全面实现数学教学应有的作用。
2.3重视学生运用数学思想方法能力的培养
从数学思想方法的学习到数学思想方法的应用,不是一件简单的事情。没有充分的、有意识的训练、学生的应用是不会形成的。数学分析教学在传授知识的同时.努力培养学生运用数学思想方法的意识、兴趣的能力,是我们教育改革值得重视的一个课题。教学中,要引导学生运用数学思想、数学方法解决问题,培养学生运用数学思想方法的能力,这是进行数学思想方法教学的基本目的。
下一篇:关于初级数学教育学生运用能力培育