今日的数学不再仅仅为未来的科学家和工程师所准备,数学能力是每一个公民的基本素质之一。因此教学内容的设置必须面对全体学生,具有层次性和可选择性。根据教材设计一些难度适中具有可研究的开放性问题是实施教学内容开放,发展学生“说数学”能力的有效手段。例如,设计“无问题”练习,即只有已知条件,而无结论,然后要求学生判断用所学的知识可以从这些已知中推断出哪些结论。
例1如图,分别以△ABC的边AB,AC为一边作正方形ABDE和正方形ACFG,连结CE,BG经过学生的分析、讨论、回答,由该题条件可以推出如下几个问题:∵△ABG≌△AEC;∴BG=CE;∴∠AEC=∠ABG(或∠ACE=∠AGB);
∴BG⊥CE;∴△BCH(或△EGH)为直角三角形(设BG与CE交于H)
例2如图,在正方形ABCD中,G为CD上任意一点,以CG为一边画正方形CEFG.学生推断出该题可能有以下问题:
∵△BCG≌△DCE;∴BG=DE;∴∠GBC=∠EDC;∴BG⊥DE;
这样能使每一个学生从事自己力所能及的探索,通过自己的努力解决问题,无论程度如何,学生都会说出一些结论,都会给学生带来快乐,不至于学生问题无头说起,讨论也可以由浅入深。
(3)开放教学方法,促进“说数学”教学实践
教学方法没有绝对好和绝对坏的区分,适应特定的创新需要,适应学生特定发展就是好方法。我们所采用的方法,必须能启发诱导学生去思考,扩大他们对学数学的兴趣,帮助他们做他们想做的事。因在提倡对传统教学进行改革的同时,加强对研究法、发明法、小组讲座法等教学方法的使用,并在教学活动中重视多种教学方法最优化组合。逐步使由学生提出新问题,课堂讨论,学生解释,成为课堂教学不可缺少的环节。
例如在解决上述例1、例2中组织学生进行四人小组口头讨论,先由大家猜出题目要我们求证的各种结论,然后轮流说出推理过程,若有说不完整的或有错误的地方,则由其他学生补充或纠正,发挥集体的智慧。
(4)正确理解数学语言,准确使用数学语言
数学学科与其它学科的一个显著区别,在于数学学科中充满着符号、图形和图像,它们按照一定规则表达数学意义、交流数学思想。这些符号、图形和图像就是数学语言。数学语言和自然语言不同。发展学生“说数学”能力,使学生能快捷有效地讲解和交流,必须正确理解数学语言,从而准确使用数学语言。