例如,有理数概念的教学:有理数是一个以外延定义的概念,课本中这样叙述:“整数和分数统称有理数”。它揭示了有理数的所有外延,即不扩充也不遗漏,这本身就体现了分类的思想方法,在数学教学中可依据具体情况对有理数作出不同的分类。
几何中有更多的分类内容,如:角的分类、三角形的分类、四边形的分类、圆周角的定理的证明、弦切角定理的证明、正弦定理的证明等等,不一而足,这些教材都为学习分类的思想方法提供了极好的素材,教学中应重视使用。
四、寓数学思想方法于教材教法之中,优化学生思维品质
数学思想方法不同于其它基础知识,不能用符号、图形、式子等表示,不可能在一节或几节课内完成。为了使学生在初中得到一些数学思想方法方面的陶冶,只有教师在平时的课堂教学活动中结合教材、教法有意识地有目的地进行传授,使学生慢慢地消化、吸收,天长日久才能达到潜移默化。
1、经常归纳,训练思维的深刻性
归纳的思想就是由个性到共性,由特殊现象归纳出一般的规律,从而从本质上把握事物。
例如,一元一次方程应用题中关于浓度问题的教学,引导学生做如下的练习:现有含盐10%的盐水300千克,
要配成含盐8%的盐水,需要加水多少?
要配成含盐15%的盐水,需要加盐多少?
要配成含盐18%的盐水,需要加入含盐25%的盐水多少千克?
做完以上练习之后,教师可以启发学生思考:如果把水的浓度看作0%,盐的浓度看作100%,三种类型的列式可否归纳为一种?
2、类比联想,训练相似思维
相似思维就是从一个事物的性质变化规律,去研究和发现另一有相似性事物的性质和变化规律,从而寻找解决问题的方法,相似思维需要联想,而类比的方法是联想的一种重要有效的途径。
如列一元一次方程解应用题,在讲完了行程问题之后,再讲工作量问题,可以引导学生这样思考:比较时间与工作日、速度与工作效率、距离与工作总量的意义,写出各自三个量之间的关系,分析在列方程中,等量关系是否有类似之处?
经分析得出:可以把工作量问题按照行程问题一样处理,另有工程问题、水流问题都与行程问题基本一致。
3、寻求转化,训练创造思维
前面提到,转化的思想是初中教材中涉及最多的数学思想,转化思维是创造思维的核心。
例2、证明方程 ( x - m )( x + n ) = 1有二个实根,且一根大于m ,一根小于m 。
此题若用常规方法是十分困难的,但若能联系二次函数的图像,应用数形的转化,会使问题很快地得到解决。
证:设 y = ( x - m )( x + n ) - 1 ,则其图像为开口向上的抛物线,取其上一点( m , -1 ),此点在x轴下方,根据抛物线向上无限伸展的特性,必然与x轴交于两点,则交点 A(x1 , 0),B(x2 , 0) 必在 (m , 0) 点的两旁,原题得证。(图略)
总之,教师在教学的各个环节——备课、讲课、辅导、作业布置等教学活动中,应努力挖掘适合初中学生的有关数学思想方法的知识,有意识地、长期地坚持进行,提高学生的素质,使教学水平更上一层楼。
相关推荐链接:
下一篇:数学教育中的失败教育法