(三)学生有了适当的学习准备后,当数学信息(数学新知识)刺激大脑时,大脑就通过学习情景与数学信息发生相互作用,从而进入了学习的内化阶段。?
内化阶段包括定向、联想、同化或顺应等几个心理过程。?
1.在学习的定向阶段,首先,学生从对学习情境所提供的背景关系的俯瞰全貌式的概览开始,不断的探究、领悟新知识的价值和特点,从而使原数学认知结构与新知识发生认知冲突,这种冲突使得他们在心理上产生学习新知识的认知需要和学习动机,从而促使他们调用原认知结构去处理新知识,进行认知活动。其次,学生通过感官的作用,辨别数学新知识的特征(如数学符号、术语、公式、图象等),并把它和已有的数学知识经验联系起来,从而分化出数学新知识的本质特征和非本质特征。最后,通过对本质特征和非本质特征的区分,概括出新知识的有意义的东西,获得了数学新知识的表象和结构,即潜在意义。
2.知觉到新知识的潜在意义后,要达到对新知识的理解,还需要新旧知识相互作用,这一思维过程从联想开始。?
联想即把原数学认知结构中与数学新知识有联系的知识经验(如概念、命题、术语、思想方法等)分化出来,以提供内化新知识的衔接点和组织者。它包括选取原数学认知结构中与新知识有关的知识经验,区分新旧知识的异同,分化与新知识有本质联系的知识经验等几个环节。对于复杂的数学学习(如问题解决),联想是创造性思维的第一步,即它能综合已有的知识,在对问题情景的整体把握基础上,构造出新问题的基本结构和模型,从而对问题的解决提出假设。?
例如,中学生在学习矩形概念时,他们从日常生活和小学学过的长方形概念中取得了潜在意义;然后,通过联想,从原数学认知结构中分化出内化新知识的衔接点——平行四边形概念和性质。?
联想的结果,使新旧知识建立了实质的、非人为的联系。接着,学生可以运用已分化出的知识经验来内化新知识,并且以同化和顺应两种形式来进行。?
3.同化是利用原数学认知结构的数学知识经验去说明、解释并容纳数学新知识。例如,学生学习矩形的概念就是利用平行四边形概念进行同化的过程。?
顺应是指当原数学认知结构不能有效地容纳数学新知识时,主体将对原数学认知结构进行改造,以适应新知识的学习。顺应的过程是:对新知识进行归纳、概括,对原数学认知结构进行改造和整理,从而使新旧知识建立密切联系,新知识被纳入到学生的数学认知结构中,原数学认知结构得到改造并扩大。例如,初一学生学习代数初步知识,就是通过顺应来进行的。尽管他们在小学学过算术,但算术与代数的不一致性,使他们只能改造头脑中已有的算术知识结构,通过字母代表数的学习,才逐渐掌握代数知识。?
如果说同化的作用是改造新数学知识使之与数学认知结构相吻合的话,那么顺应则是改造原认知结构以适应学习新知识的需要,因而同化只能从量上丰富原数学认知结构,顺应则能从质上改变数学认知结构,不过,同化和顺应往往存在于同一个认知活动中,在同化中有顺应,而在顺应中,尽可能先同化。例如,数系的一系列扩张,就是旧数系顺应新数系,而新数系则尽可能保持旧数系的原有法则,这是一个实质上顺应,形式上同化的过程。?
值得指出的是,不管同化或顺应,总要对原有数学知识经验和新知识作出重新评价。即使新知识可作为原数学知识经验的补充和完善,原数学知识经验的某些部分也应重新分类、重新形成概念,并且这一过程还特别需要元认知系统的监控、调节。?
经过同化和顺应后,新数学知识纳入了学生数学认知结构中,原数学认知结构发生了变化。但是新旧知识的相互作用并未停止,新知识的保持和遗忘就是同一相互作用的继续。因此,只有采用一定的强化措施,才能巩固所获得的新知识。?
(四)强化阶段是数学新知识的进一步理解和巩固阶段,它是通过练习、形成性评价、小结(概括)、灵活运用等方式而实现的。
1.练习过程是学生把数学新知识初步运用于具体情境中的过程。通过练习,可以使自己对新知识的理解程度有明确的认识,从而起反馈作用;可以使自己对新知识的理解更完整化、具体化,从而进一步保持和长时间巩固新知识,并形成技能;同时,还有助于提高学生的学习兴趣,维持良好的学习动机。有时,练习还可以使学生产生整体感受,从而为领悟数学整体的突出性质——数学思想打下基础。?
课堂例题、课堂练习、课外作业等都可看作是练习。?
2.应当说,形成性评价是以检验学生对学习内容的领会程度为标准的,因而它应贯穿于数学新知识意义的获得和保持过程的始终。它又包括教师课内诊断和学生自我评价两个方面。教师对学生的课内诊断一般通过观察、提问和形成性测试等手段进行。学生的自我评价一般是从教师的评价、原数学认知结构中元认知的监控和调节作用以及练习中得出的,它也包括认知和情感两方面内容。?
通过形成性评价后,学生对于自己掌握新知识的情况有所了解,从而调节自己进一步努力的方向;同时,教师可对症下药,采取补救措施。?
下一篇:如何开展数学课外活动