3.小结是指在获得新知识的意义并通过练习(通过变式和具体运用,抓住本质特征)后,用最简单、最经济、概括性最强的术语对新知识加以组织,使数学新知识变为具有概括性,能融合于已有知识经验中的基本概念、基本命题、公式甚至思想等,从而使新知识更加巩固。通过小结,新知识由于其概括性而具有更大的迁移价值,即还能影响后继学习和运用它们解决问题。?
4.新知识的灵活运用过程是指创造性地利用新知识
去解决数学问题及其他问题的过程。实际上,解决问题是在对问题情景和题目条件的整体把握的情况下,利用原数学认知结构从整体的角度把握问题的实质,再结合数学知识经验调动各种数学思维成分(如逻辑思维、直觉思维、发散思维和辐合思维等)的参与,从而提出尝试性模型(假设),并检验假设以达到目的。?
灵活运用是检查学生数学学习效果的综合性指标,也是数学学习的最高目标。?
(五)数学学习效果包括认知成果和情感变化两个方面。
经过学习的内化和强化阶段后,在认知方面的成果是:新知识被纳入到学生的数学认知结构中,形成了新的数学认知结构,并且新知识被概括化、整体化,具有迁移作用,另外,形成了较强的技能,发展了能力。对于具体的学习,情感变化不会太大,但对于一单元,一门分支的数学学习,学生对于数学价值的认识、学习动机、学习积极性等均会有一些变化,具体讨论略。?
(六)以等腰三角形概念的学习为例,说明概念学习的过程。?
1.学习的内容:等腰三角形的概念,学习的准备:原数学认知结构中三角形的概念、 三角形全等的性质和判定。?
2.内化阶段:首先(由教师根据图形)给出“有两条边相等的三角形是等腰三角形”这一定义和本质属性,并给出相应的腰、顶角、底角的定义,这样学生可以分化为等腰三角形概念的本质特征和非本质特征;其次,学生将新概念(等腰三角形)与原认知结构中的知识经验(三角形、全等三角形)联系起来,把新概念纳入原有概念(三角形)中,并认识到新概念是原有三角形概念的限制;最后,运用变式和肯定、否定例证进一步突出概念(等腰三角形)的本质属性,并对概念的各种属性进行分类,如辨别下面图式,可得出等腰三角形能分为等边三角形和腰与底边不相等的等腰三角形,同时还可得出等腰三角形两底角相等等。
3.强化阶段:通过练习和小结,学生既能利用定义去判定等腰三角形,还能利用等腰三角形两腰相等的性质去解题;同时,等腰三角形的概念还可纳入三角形的概念系统中。
三、从数学学习过程看数学教学策略?
所谓数学教学策略是指数学教师对数学课堂教学所作的系统决策和设计。它包括设置数学学习情景的策略,呈现数学教学内容的策略,选择数学教学方法与教学辅助手段的策略,教学效果的检查和评价的策略等。?
从对数学学习过程的分析可知,数学教师的作用在于促使学生数学学习过程中的几个阶段顺利地进行,以达到良好的数学学习效果为目标。相应地,数学教学策略就应当围绕着促使学生形成良好的数学认知结构和学习数学的情感系统来制定。下面我们根据学生数学学习过程的模式来讨论数学教学策略。?
(一)选择和分析数学教学内容(备课)的策略。
数学认知结构是内化的数学知识结构,而数学知识结构又是通过数学教材反映出来的 ,故选择和分析数学教学内容,必须立足于教材,但又不能照本宣科,还要对教材进行居高临下的剖析和重新组织,使它成为促进学生数学认知结构发展的相对完善的知识结构。具体地:?
1.分析和领会单元数学知识结构,并按事实(术语、符号等)、技能、概念、原理等几方面对教学内容进行分类,以弄清教材中的知识分布情况;在此基础上,以整体观点为指导,瞻前顾后,随时把本单元的知识与其他内容联系起来考虑,以此克服知识的离散性,使学生学习时容易形成经纬交织,融会贯通的知识网络,同时有助于内化和保持新知识。
2.在分类的基础上,分析本单元教学的重点和难点。所谓重点,就是知识的中心点,即单元或学科领域中核心的基本的知识点,它在抽象性、包摄性、概括性程度上高于其他知识,理解了中心点的知识,其他知识的掌握就顺理成章了。然后考虑以突破重点、难点为核心,并参照教学大纲和教学方案分配的教学时数,安排课时和教学顺序。?
下一篇:如何开展数学课外活动