【摘要】:精品学习网论文网为您提供数学论文范文参考,以及论文写作指导和格式排版要求,解决您在论文写作中的难题。
“转化”是数学中最常用最基本的思维方式之一。转化就是在分析解决问题时,把那些待解决或难解决的问题,通过某种转 化过程,把复杂、隐蔽的问题转化为简单、明显的问题。初中数 学的转化方法多种多样,常用的有下列几种:
一、高次(或多元)向低次(或低元)转化;
例1已知X2-2X-l=0,则代数式X3—X2—3X十2的值是 (97年广东省初三数学竞赛第一道试题)
(A)O (B)1 (C)2 (D)3
分析:此题若通过已知X2-2X-1=0解得
X=2土石代入原式求出答案,显然运算量大。因此为了减 少运算量,我们应将问题转化,经分析可知:X2=2X十1代人原式,从而达到降次的目的,最后得到正确答案(D),由此可见,通过降次,可以将复杂问题转化为简单低次的问题,从而得到解决。
分析:解多元方程组的思想方法是将多元方程组转化为低元方程组,最后转化为一次方程而求得,此题的解题思想方法如下所示: 三元一次方程组消元二元一次方程组消元一元一次方程
二、特殊与一般的互相转化从特殊(一船)到一般(特殊)的思维方法是数学和其它科 学领域中进行探索,发现真理知识的重要途径。
例3圆周角定理:一条弧所对的圆周角等于它所对的圆心 角的一半。
分析:考虑到圆周角与圆心角的一般关系,我们可以分为下列三种情况来证明。
(1)如图1圆心在圆周角的一边上:
易证得∠APB=1/2∠AOB
(2)如图2圆心在圆周角的内部:
易证∠APB=∠APS-∠BPS=1/2∠AOS -1/2∠BOS=1/2∠AOS
(3)如图3圆心在圆周角的外部:
易得∠APB=∠APS-∠BPS =∠AOS-1/2∠BOS 』 J =1/2∠AOB
综上所述,不论哪种情况,圆周角都等于它所对的弧所对的圆心角的一半,从而命题得证(详细过程参考《几何》第三册P91-92)这是由特殊到一般的转化。
例4 如图4,已知定圆⊙O1;与定圆⊙02外切于P点,AB 是过切点P的任一直线分别与⊙01和⊙02交于A、B 求证: AP/BP是一个定值。则应先找出这个定值,而题中给出的条件中固定不变的只有两圆的半径(不防设为R.r)即要证AP/BP与R,r有 关,由此启发我们过切点P作⊙Ol与⊙02的直径CD构成Rt △APC~Rt△BPD,得出AP/BP=CP/DP=r/R:参由此可见,找出定值的进程就是由一船到特殊转化的过程。
三、正面向反面的转化。
很多数学的问题正面难于入手,但从问题的反面则易于解决,故此我们通常用正面向反面的转化方法去解决一些数学问 题。
下一篇:当代数学教学模式的发展趋势