编辑:
2015-08-12
再看图6―7中的(b),同上,1与3,2与
处在互为对面的位置上。
最后再看图6―7中的(c),同上,1与
,2与4处在互为对面的位置上。
图6―7(a)、(b)、(c)标有数字的空白面上的图案见图6―8中的(a)、(b)、(c)。
例2 图6―9中的几何体是一个长方体,四边形APQC是长方体的一个截面(即过长方体上四点A、P、Q、C的平面与长方体相交所得到的图形),P、Q分别为棱A1B1、B1C1的中点,请在此长方体的平面展图上,标出线段AC、CQ、QP、PA来。
分析与解:只要能正确画出图6―9中长方体的平面展开图,问题便能迎刃而解。图6―10中的粗实线,就是题目中所要标出的线段AC、CQ、QP、PA。
例3在图6―11中,M、N是圆柱体的同一条母线上且位于上、下底面上的两点,若从M点绕圆柱体的侧面到达N,沿怎么样的路线路程最短?
分析与解:沿圆柱体的母线MN将圆柱的侧面剪开铺平,得出圆柱的侧面展开图,见图6―12,从M点绕圆柱体的侧面到达N点。实际上是从侧面展开图的长方形的一个顶点M到达不相邻的另一个顶点N。而两点间以线段的长度最短。所以最短路线就是侧面展开图中长方形的一条对角线,见图6―12和图6―13。
例4图6―14中的几何体是一棱长为4厘米的正方体,若在它的各个面的中心位置上,各打一个直径为2厘米,深为1厘米的圆柱形的孔,求打孔后几何体的表面积是多少(π=3.14)?
分析与解:因为正方体的棱长为2厘米,而孔深只有1厘米,所以正方体没有被打透。这一来打孔后所得几何体的表面积,等于原来正方体的表面积,再加上六个完全一样的圆柱的侧面积、这六个圆柱的高为1厘米,底面圆的半径为1厘米。
正方体的表面积为42×6=96(平方厘米)
一个圆柱的侧面积为2π×1×1=6.28(平方厘米)
几何体的表面积为96+6.28×6=133.68(平方厘米)
答:(略)
例5图6―15是由18个边长为1厘米的小正方体拼成的几何体,求此几何体的表面积是多少?
分析与解:从图6―15中可以看出,18个小正方体一共摆了三层,第一层2个,第二层7个,因为18-7-2=9,所以第三层摆了9个。另外,上、下两个面的表面积是相同的,同样,前、后;左、右两个面的表面积也是分别相同的。因为小正方体的棱长是1厘米,所以
上面的表面积为12×9=9(平方厘米)
前面的表面积为12×8=8(平方厘米)
左面的表面积为12×7=7(平方厘米)
几何体的表面积为9×2+8×2+7×2=
答:(略)
例6图6―16中所示图形,是一个底面直径为20厘米的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6厘米,高20厘米的一个圆锥体铅锤,当铅锤从水中取出后,杯里的水将下降几厘米?(π=3.14)
分析与解:因为玻璃杯是圆柱形的,所以铅锤取出后,水面下降部分实际是一个小圆柱,这个圆柱的底面与玻璃杯的底面一样,是一直径为20厘米的圆,它的体积正好等于圆锥体铅锤的体积,这个小圆柱的高就是水面下降的高度。
因为圆锥形铅锤的体积为
设水面下降的高度为x,则小圆柱的体积为x(20÷2)2×x=100πx(立方厘米)
所以有下列方程:
标签:几何
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。