编辑:
2015-08-12
60π=100πx,解此方程得:
x=0.6(厘米)
答:铅锤取出后,杯中水面下降了0.6厘米。
例7横截面直径为2分米的一根圆钢,截成两段后,两段表面积的和为75.36平方分米,求原来那根圆钢的体积是多少(π=3.14)?
分析与解:根据圆柱体的体积公式,体积=底面积×高。假设圆钢长为x,因为将圆钢截成两段后,两段表面积的和,等于圆钢的侧面积加上四个底面圆的面积,所以有下面式子:
2π×(2÷2)×x+4π×(2÷2)2
=2πx+4π
根据题目中给出的已知条件,可得下面方程:
2πx+4π=75.36
解方程:
圆钢的体积为π×(2÷2)2×10≈31.4(立方分米)
答:(略)。
例8一个圆锥的侧面展开图是一个半径为10厘米、圆心角为216°的扇形,求此圆锥的体积是多少(π=3.14)?
分析与解:要想求出圆锥的体积,就要先求出它的底面圆的半径与高。按题意画图6―17。在图6―17中,字母R、h分别表示底面圆的半径和圆锥体的高,根据弧长公式:弧长=2лR×n÷360(这里R是圆的半径,n为弧所对圆心角的度数),便可求出弧长来。这个弧长就是底面圆的周长,再利用周长公式,就可求出底面圆的半径R。另外从图6―17中可以看出:圆锥的高、母线、底面圆的半径正好构成一个直角三角形,利用勾股定理便可求出圆锥的高h。
所以 2πR=12π,得R=6(厘米)
在直角三角形中,根据勾股定理有:
102=h2+R2,即h2=102-R2
=100-36=64,h=8(厘米)
答:(略)
例9图6―18中的图形是一个正方体,H、G、F分别是棱AB、AD、AA1的中点。现在沿三角形GFH所在平面锯掉正方体的一个角,问锯掉的这块的体积是原正方体体积的几分之几?
分析与解:因为锯掉的是立方体的一个角,所以HA与AG、AF都垂直。即HA垂直于三角形AGF所在的立方体的上底面,实际上锯掉的这个角,是以三角形AGF为底面,H为顶点的一个三棱锥,如果我们假设正方体的棱长为a,则正方体的体积为a3。
三棱锥的底面是直角三角形AGF,而角FAG为90°,G、F又分别为AD、
而三棱锥的体积等于底面积与高的乘积再除以3,所以锯掉的那一角的体积为
答:(略)
例10图6―19是一个里面装有水的三棱柱封闭容器,图6―20是这个三棱柱的平面展开图。当以A面作为底面放在桌面上时,水高2厘米,如果以B面与C面分别作为底面放在桌面上时,水面高各为多少厘米?
分析与解:我们先求以A面作为底面放在桌面上时容器内的水的体积。此时水的体积,与以梯形FJQP为底面、JI为高的棱柱的体积相等。棱柱的体积等于底面积乘以高,从图6―20可以看出,此棱柱的高JI为12厘米,梯形FJQP的下底FJ为3厘米,高QJ为2厘米。因为PTJQ是个长方形,所以QJ=PT=2厘米,而Q点是GJ的中点,PQ平行于FJ,这样可以推算出QP为FJ的一半,为1.5厘米,这一来梯形FJQP的面积为
以C面为底面时,水的体积与以C(即三解形EHI)为底面,高为某数值
此时水面的高度为:
54÷6=9(厘米)
以B面作为底面时,原来以A面为底面时不装水的那一部分,现在应装水,原来装水的某一部分现在应空出来,下面来讨论这两份之间的数量关系。
为方便起见,我们把C面适当放大成图6―21,在图6―21中,因为PQ平行于FJ,PT垂直于FJ,所以JQPT是一长方图6ZI形,故JQ、PT、QG的长都是2厘米,TJ、PQ的长为1.5厘米,因为FJ长为3厘米,所以FT的长也为1.5厘米,这一来三角形FPT与PQG的形状一样,面积相等。这便说明原来以三角形PFT为底面,JI为高的装水的棱柱的体积,与现在以三角形PQG为底面,JI为高装水的棱柱的体积是相等的。所以以B面为底面时,水面的高度等于PQ的长度,即水面高为1.5厘米。
答:(略)
以上精品学习网为大家准备了简单几何体的表面积与体积的计算,希望可以帮助到你们!
相关推荐:
标签:几何
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。