编辑:
2014-01-10
三、解答题(共9进大题,共90分)
16.解方程: 2 x + x x+3 =1.
★☆☆☆☆
17.为了加强食品安全管理,有关部门对某大型超市的甲、乙两种品牌食用油共抽取18瓶进行检测,检测结果分成“优秀“、“合格“和“不合格”三个等级,数据处理后制成以下折线统计图和扇形统计图.
(1)甲、乙两种品牌食用油各被抽取了多少瓶用于检测?
(2)在该超购买一瓶乙品牌食用油,请估计能买到“优秀”等级的概率是多少?
18.如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE丄DF,交AB于E,交BC于F,若AE=4,FC=3,求EF长.
VIP
19.有3张扑克牌,分別是红桃3、红桃4和黑桃5.把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张.
(1)先后两次抽得的数字分别记为s和t,求|s-t|≥l的概率.
(2)甲、乙两人做游戏,现有两种方案.A方案:若两次抽得相同花色则甲胜,否则乙胜.B方案:若两次抽得数字和为奇数则甲胜,否则乙胜.请问甲选择哪种方案胜率更高?
20.今年我省干旱灾情严重,甲地急需抗旱用水15万吨,乙地13万吨.现有两水库决定各调出14万吨水支援甲、乙两地抗旱.从A地到甲地50千米,到乙地30千米;从B地到甲地60千米,到乙地45千米
(1)设从A水库调往甲地的水量为x万吨,完成下表:
甲 乙 总计
A x 14
B 14
总计 15 13 28
(2)请设计一个调运方案,使水的调运总量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨•千米)
VIP
21.如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1:
3 (指坡面的铅直高度与水平宽度的比),且AB=20m.身高为1.7m的小明站在大堤A点,测得髙压电线杆顶端点D的仰角为30°.已知地面CB宽30m,求髙压电线杆CD的髙度(结果保留三个有效数字,
3 ≈1.732).
VIP
22.如图,在圆内接四边形ABCD中,CD为∠BCA的外角的平分线,F为
AD 上一点,BC=AF,
延长DF与BA的延长线交于E.
(1)求证:△ABD为等腰三角形.
(2)求证:AC•AF=DF•FE.
VIP
23.我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x万元,可获得利润P=− 1 100 (x−60)2+41(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x万元,可获利润Q=− 99 100 (100−x)2+ 294 5 (100−x)+160(万元).
(1)若不进行开发,求5年所获利润的最大值是多少?
(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?
(3)根据(1)、(2),该方案是否具有实施价值?
VIP
24.如图所示,过点F(0,1)的直线y=kx+b与抛物线y= 1 4 x2交于M(x1,y1)和N(x2,y2)两点(其中x1<0,x2>0).
(1)求b的值.
(2)求x1•x2的值.
(3)分别过M,N作直线l:y=-1的垂线,垂足分别是 M1和N1.判断△M1FN1的形状,并证明你的结论.
(4)对于过点F的任意直线MN,是否存在一条定直线m(m是常数),使m与以MN为直径的圆
相切?如果有,请求出这条直线m的解析式;如果没有,请说明理由.
以上就是关于2011年湖北省随州市中考数学试题的全部内容,希望可以对正在面临中考的大家有所帮助!
相关推荐:
标签:随州中考试题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。