编辑:
2014-01-06
20.先化简,再求值:( 1 a+2 −1)÷ a2−1 a+2 ,其中a=2.
21.为了解某学校学生的个性特长发展情况,在全校范围内随机抽查了部分学生参加音乐、体育、美术、书法等活动项目(每人只限一项)的情况.并将所得数据进行了统计.结果如图1所示.
(1)在这次调查中,一共抽查了 名学生;
(2)求出扇形统计图(图2)中参加“音乐活动”项目所对扇形的圆心角的度数;
(3)若该校有2400名学生,请估计该校参加“美术活动项目的人数.
22.为落实素质教育要求,促进学生全面发展,我市某中学2009年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2011年投资18.59万元
(1)求该学校为新增电脑投资的年平均增长率;
(2)从2009年到2011年,该中学三年为新增电脑共投资多少万元?
VIP
23.如图,AB是半圆的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.
(1)判断直线PD是否为⊙O的切线,并说明理由;
(2)如果∠BDE=60°,PD=
3 ,求PA的长.
24.某中学九年级甲、乙两班商定举行一次远足活动,A、B两地相距10千米,甲班从A地出发匀速步行到B地,乙班从B地出发匀速步行到A地.两班同时出发,相向
而行.设步行时间为x小时,甲、乙两班离A地的距离分别为y1、y2千米,y1、y2与x的函数关系图象如图所示.根据图象解答下列问题:
(1)直接写出,y1、y2与x的函数关系式;
(2)求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A地多少千米?
(3)甲、乙两班首次相距4千米时所用时间是多少小时?
VIP
25.如图1,已知矩形ABED,点C是边DE的中点,且AB=2AD.
(1)判断△ABC的形状,并说明理由;
(2)保持图1中△ABC固定不变,绕点C旋转DE所在的直线MN到图2中(当垂线段AD、BE在直线MN的同侧),试探究线段AD、BE、DE长度之间有什么关系?并给予证明;
(3)保持图2中△ABC固定不变,继续绕点C旋转DE所在的直线MN到图3中的位置(当垂线段AD、BE在直线MN的异侧).试探究线段AD、BE、DE长度之间有什么关系?并给予证明.
26.如图:二次函数y=-x2+ax+b的图象与x轴交于A(- 1 2 ,0),B(2,0)两点,且与y轴交于
点C.
(1)求该抛物线的解析式,并判断△ABC的形状;
(2)在x轴上方的抛物线上有一点D,且A、C、D、B四点为顶点的四边形是等腰梯形,请直接写出D点的坐标;
(3)在此抛物线上是否存在点P,使得以A、C、B、P四点为顶点的四边形是直角梯形?若存在,求出P点的坐标;若不存在,说明理由.
由精品小编为大家提供的山东省2010年临沂市中考数学试题就到这里了,希望可以帮助到您!
相关推荐:
标签:临沂中考试题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。