编辑:
2013-10-31
21.(8分)如图,在△ABC中,AB=AC,D是BC中点,AE平分∠BAD交BC于点E,点O是AB上一点,⊙O过A、E两点, 交AD于点G,交AB于点F.
(1)求证:BC与⊙O相切;
(2)当∠BAC=120°时,求证: .
22.(8分)如图,在一次课外数学实践活动中,小明站在操场的A处,他的两侧分别是旗杆CD和一幢教学楼EF,点A、D、F在同一直线上,从A处测得旗杆顶部和教学楼顶部的仰角分别为45°和60°,
已知DF=14m,EF=15m,求旗杆CD高.(结果精确到0.1m,参考数据: ≈1.41, ≈1.73)
23.(12分)如图①,平面直角坐标系中,已知C(0,10),点P、Q同时从点O出发,在线段OC上做往返匀速运动,设运动时间为t(s),点P、Q离开点O的距离为S,图②中线段OA、OB(A、B都在格点上)分别表示当0≤t≤6时P、Q两点离开点O的距离S与运动时间t(s)的函数图像.
⑴请在图②中分别画出当6≤t≤10时P、Q两点离开点O的距离S与运动时间t(s)的函数图像.(3分)
⑵求出P、Q两点第一次相遇的时刻.(3分)
⑶如图①,在运动过程中,以OP为一边画正方形OPMD,点D在x轴正半轴上,作QE∥PD交x轴于E,设△PMD与△OQE重合部分的面积为y,试求出当0≤t≤10时y与t(s)的函数关系式(写出相应的t的范围) .(6分)
24.(14分)如图,已知抛物线 经过点 ,抛物线的顶点为 ,过 作射线OM∥AD.过顶点 平行于 轴的直线交射线 于点 , 在 轴正半轴上,连结 .
(1)求该抛物线的解析式;(3分)
(2)若动点 从点 出发,以每秒1个长度单位的速度沿射线 运动,设点 运动的时间为 .问当 为何值时,四边形 分别为平行四边形?直角梯形?等腰梯形?(6分)
备用图
(3)若 ,动点 和动点 分别从点 和点 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿 和 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为 ,连接 ,当 为何值时,四边形 的面积最小?并求出最小值及此时 的长.(5分)
总结:初三数学模拟试题就为大家分享到这里了,供大家参考阅读,希望对同学们的复习有所帮助!祝同学们金榜题名!
阅读本文的还阅读了:
标签:中考数学模拟题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。