编辑:
2016-01-14
9. (2014•乐山,第14题3分)如图,在△ABC中,BC边的中垂线交BC于D,交AB于E.若CE平分∠ACB,∠B=40°,则∠A= 60 度.
考点: 线段垂直平分线的性质..
分析: 根据线段垂直平分线得出BE=CE,推出∠B=∠BCE=40°,求出∠ACB=2∠BCE=80°,代入∠A=180°﹣∠B﹣∠ACB求出即可.
解答: 解:∵DE是线段BC的垂直平分线,
∴BE=CE,
∴∠B=∠BCE=40°,
∵CE平分∠ACB,
∴∠ACB=2∠BCE=80°,
∴∠A=180°﹣∠B﹣∠ACB=60°,
故答案为:60.
点评: 本题考查了等腰三角形性质,线段垂直平分线性质,三角形内角和定理的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.
10.(2014•四川成都,第12题4分)如图,为估计池塘岸边A,B两点间的距离,在池塘的一侧选取点O,分别取OA,OB的中点M,N,测得MN=32m,则A,B两点间的距离是 64 m.
考点: 三角形中位线定理.
专题: 应用题.
分析: 根据M、N是OA、OB的中点,即MN是△OAB的中位线,根据三角形的中位线定理:三角形的中位线平行于第三边且等于第三边的一半,即可求解.
解答: 解:∵M、N是OA、OB的中点,即MN是△OAB的中位线,
∴MN= AB,
∴AB=2CD=2×32=64(m).
故答案是:64.
点评: 本题考查了三角形的中位线定理应用,正确理解定理是解题的关键.
11.(2014•随州,第13题3分)将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为 75 度.
考点: 三角形内角和定理;平行线的性质
专题: 计算题;压轴题.
分析: 根据三角形三内角之和等于180°求解.
解答: 解:如图.
∵∠3=60°,∠4=45°,
∴∠1=∠5=180°﹣∠3﹣∠4=75°.
故答案为:75.
点评: 考查三角形内角之和等于180°.
12、(2014•宁夏,第16题3分)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面的半径是 .
考点: 三角形的外接圆与外心
专题: 网格型.
分析: 根据题意得出△ABC的外接圆的圆心位置,进而利用勾股定理得出能够完全覆盖这个三角形的最小圆面的半径.
解答: 解:如图所示:点O为△ABC外接圆圆心,则AO为外接圆半径,
故能够完全覆盖这个三角形的最小圆面的半径是: .
故答案为: .
点评: 此题主要考查了三角形的外接圆与外心,得出外接圆圆心位置是解题关键.
标签:中考数学模拟题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。