编辑:
2017-10-20
又∵由光学知识得∠CED=∠AEB
∴△CDE∽△ABE
【错误2】∵△CDE∽△EBA
∴AB:DE=BE:CD
【分析】学生将考题的图形与图形(2)发生了混淆。
如图(2):AB⊥BD于B,CD⊥BD于D,AE⊥CE于E,具有三个特殊角,由余角的性质可推得∠C=∠AEB,∠CED=∠A,两个相似三角形一躺一立;而考题图中则是∠CED=∠AEB,∠C=∠A,两个相似三角形面对面放置。
学生在解题过程中,由于忽视了两个图形之间的细微差异,从而导致了错误比例式的书写。
【正确解法】
∵△CDE∽△ABE
∴AB:CD=BE:DE
【完整解法】∵CD⊥BD于D,AB⊥BD于B
∴∠CDE=∠ABE=90°
又∵由光学知识得∠CED=∠AEB
∴△CDE∽△ABE
∴AB:CD=BE:DE
∴AB:1.6=18:2.4 ∴AB=12
答:旗杆AB高为12米。
通过分析两种错误解法,我们发现学生们有相似三角形基本图形的印象,却忽视了基本图形1、2、3之间的区别,发生了混淆。因此,我们不仅要发现、归纳基本图形,更要关注它们之间的区别与联系,以便在解题过程中避免失误、发挥更大的功效。
希望大家可以学会眉山中考数学相似证明.想了解更多精彩内容,请关注我们的网站!
标签:眉山中考数学
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。