编辑:
2015-01-13
五、解答题(共3道小题,23,24小题每题7分,25小题8分,共 22 分)
23.解:(1)如图,延长CD到点E使DE=CD,连接BE交AD于点P. ……………… 2分
PB+PC的最小值即为BE的长.
(2)过点E作EH⊥AB,交BA的延长线于点H.
∵ ∠A =∠ADC = 90°,
∴ CD∥AB.
∵ AD=2,
∴ EH=AD=2. ……………… 4分
∵ CD∥AB,
∴ ∠1=∠3.
∵ BC=2CD,CE=2CD,
∴ BC= CE.
∴ ∠1=∠2.
∴ ∠3=∠2.
∵ ∠ABC = 60°,
∴ ∠3=30°. ……………… 6分
在Rt△EHB中,∠H=90°,
∴ BE=2HE=4. ………………………………………………… 7分
即 PB+PC的最小值为4.
24.解:(1)在AB上截取AG=AF.
∵AD是△ABC的角平分线,
∴∠FAD=∠DAG.
又∵AD=AD,
∴△AFD≌△AGD.
∴∠AFD=∠AGD,FD=GD.
∵FD=BD,
∴BD=GD,
∴∠DGB=∠B,
∴∠B+∠AFD=∠DGB+∠AGD=180°. ………………………………………………… 4分
(2)AE= AF+FD. ………………………………………………… 5分
过点E作∠DEH=∠DEA,点H在BC上.
∵∠B+2∠DEA=180°,
∴∠HEB=∠B.
∵∠B+∠AFD=180°,
∴∠AFD=∠AGD=∠GEH,
∴GD∥EH.
∴∠GDE=∠DEH=∠DEG.
∴GD=GE.
又∵AF=AG,
∴AE=AG+GE=AF+FD. ………………………………………………… 7分
25.解:(1)如图1,依题意,C(1,0),OC=1.
由D(0,1),得OD=1.
在△DOC中,∠DOC=90°,OD=OC=1.
可得 ∠CDO=45°. …………………1分
∵ BF⊥CD于F,
∴ ∠BFD=90°.
∴ ∠DBF=90°-∠CDO =45°. …………………2分
∴ FD=FB。
由D(0,1), B(0,-3),得BD=4.
标签:数学试卷
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。