编辑:
2015-11-05
参考答案与试题解析
一、选择题(每题2分,共20分)
1.下列数据中,哪一组能构成直角三角形( )
A. 1,2,3 B. 5,8,5 C. 3,4,5 D. 6,8,12
考点: 勾股数.
分析: 根据勾股定理的逆定理可知,当三角 形中三边的关系为:a2+b2=c2时,则三角形为直角三角形.
解答: 解:A、12+22≠32,故不是直角三角形,错误;
B、52+52≠82,故不是直角三角形,错误;
C、32+42=52,故是 直角三角形,正确;
D、62+82≠122,故不是直角三角形,错误.
故选C.
点评: 本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
2.下列函数中,一次函数为( )
A. y=x3 B. y=2x2+1 C. y= D. y=﹣3x
考点: 一次函数的定义.
分析: 利用一次函数的意义:一般地,形如y=kx+b(k≠0,k,b是常数),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,即正比例函数,所以说正比例函数是一种特殊的一次函数,由此选择答案即可.
解答: 解:A、B、C都不是一次函数;
D、是一次函数.
故选:D.
点评: 此题考查一次函数的意义,注意基本形式和基本概念的掌握.
3.估计 的值在( )
A. 2到3之间 B. 3到4之间 C. 4到5之间 D. 5到6之间
考点: 估算无理数的大小.
专题: 计算题.
分析: 利用”夹逼法“得出 的范围,继而也可得出 的范围.
解答: 解:∵2= < =3,
∴3< <4,
故选B.
点评: 此题考查了估算无理数的大小的知识,属于基础题,解答本题的关键是掌握夹逼法的运用.
4.在实数中: ,|﹣3|, , , ,0.8080080008…(相邻两个8之间0的个数逐次加1),无理数的个数有( )
A. 4个 B. 3个 C. 2个 D. 1个
考点: 无理数.
分析: 无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
解答: 解:﹣ 、﹣ 、0.8080080008…都是无理数,|﹣3|、 、 是有理数,
故选B.
点评: 本题主要考查了无理数的 定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
标签:数学试卷
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。