编辑:
2016-01-13
7. 在平面直角坐标系xOy中,已知点P(2,2),点Q在y轴上,△PQO是等腰三角形,则满足条件的点Q共有( )
A. 5个 B. 4个 C. 3个 D. 2个
考点: 等腰三角形的判定;坐标与图形性质.
专题: 压轴题.
分析: 根据题意,画出图形,由等腰三角形的判定找出满足条件的Q点,选择正确答案.
解答: 解:如上图:满足条件的点Q共有(0,2)(0,2)(0,﹣2)(0,4).
故选B.
点评: 本题考查了等腰三角形的判定及坐标与图形的性质;利用等腰三角形的判定来解决特殊的问题,其关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.
8. 如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=( )
A. 30° B. 35° C. 40° D. 50°
考点: 旋转的性质.
分析: 旋转中心为点A,B与B′,C与C′分别是对应点,根据旋转的性质可知,旋转角∠BAB′=∠CAC′,AC=AC′,再利用平行线的性质得∠C′CA=∠CAB,把问题转化到等腰△ACC′中,根据内角和定理求∠CAC′.
解答: 解:∵CC′∥AB,∠CAB=70°,
∴∠C′CA=∠CAB=70°,
又∵C、C′为对应点,点A为旋转中心,
∴AC=AC′,即△ACC′为等腰三角形,
∴∠BAB′=∠CAC′=180°﹣2∠C′CA=40°.
故选:C.
点评: 本题考查了旋转的基本性质,对应点到旋转中心的距离相等,对应点与旋转中心的连线的夹角为旋转角.同时考查了平行线的性质.
9. 为确保信息安全,信息需加密传输,发送方由明文⇒密文(加密),接收方由密文⇒明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c
字母 a b c d e f g h i j k l m
序号 0 1 2 3 4 5 6 7 8 9 10 11 12
字母 n o p q r s t u v w x y z
序号 13 14 15 16 17 18 19 20 21 22 23 24 25
按上述规定,将明文“maths”译成密文后是( )
A. wkdrc B. wkhtc C. eqdjc D. eqhjc
考点: 有理数的混合运算.
专题: 应用题;压轴题.
分析: m对应的数字是12,12+10=22,除以26的余数仍然是22,因此对应的字母是w;a对应的数字是0,0+10=10,除以26的余数仍然是10,因此对应的字母是k;t对应的数字是19,19+10=29,除以26的余数仍然是3,因此对应的字母是d;…,所以本题译成密文后是wkdrc.
解答: 解:m、a、t、h、s分别对应的数字为12、0、19、7、18,它们分别加10除以26所得的余数为22、10、3、17、2,所对应的密文为wkdrc.
故选:A.
点评: 本题是阅读理解题,解决本题的关键是读懂题意,理清题目中数字和字母的对应关系和运算规则,然后套用题目提供的对应关系解决问题,具有一定的区分度.
10. 甲、乙两个准备在一段长为1200米的笔直公路上进行跑步,甲、乙跑步的速度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面100米处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两之间的距离y(m)与时间t(s)的函数图象是( )
A. B. C. D.
考点: 函数的图象.
专题: 压轴题.
分析: 甲在乙前面,而乙的速度大于甲,则此过程为乙先追上甲后再超过甲,全程时间以乙跑的时间计算,算出相遇时间判断图象.
解答: 解:此过程可看作追及过程,由相遇到越来越远,按照等量关系“甲在相遇前跑的路程+100=乙在相遇前跑的路程”列出等式
v乙t=v甲t+100,根据
甲、乙跑步的速度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面100米处,
则乙要追上甲,所需时间为t=50,
全程乙跑完后计时结束t总==200,
则计时结束后甲乙的距离△s=(v乙﹣v甲)×(t总﹣t)=300m
由上述分析可看出,C选项函数图象符合
故选:C.
点评: 本题考查的是函数图象与实际结合的问题,需注意相遇的时间、全程时间以及最后甲乙的距离这几个点.
标签:数学试卷
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。