您当前所在位置:首页 > 初中 > 初二 > 数学 > 数学试卷

2016八年级上册数学期末试卷(含答案和解释)

编辑:

2016-01-13

六、(本题满分12分)

21. 已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°.点E是DC的中点,过点E作DC的垂线交AB于点P,交CB的延长线于点M.点F在线段ME上,且满足CF=AD,MF=MA.

(1)若∠MFC=120°,求证:AM=2MB;

(2)求证:∠MPB=90°﹣∠FCM.

考点: 直角梯形;全等三角形的判定与性质;线段垂直平分线的性质;含30度角的直角三角形.

专题: 证明题.

分析: (1)连接MD,由于点E是DC的中点,ME⊥DC,所以MD=MC,然后利用已知条件证明△AMD≌△FMC,根据全等三角形的性质可以推出∴∠MAD=∠MFC=120°,接着得到∠MAB=30°,再根据30°的角所对的直角边等于斜边的一半即可证明AM=2BM;

(2)利用(1)的结论得到∠ADM=∠FCM,又AD∥BC,所以∠ADM=∠CMD,由此得到∠CMD=∠FCM,再利用等腰三角形的性质即可得到∠CME=∠FCM,再根据已知条件即可解决问题.

解答: 证明:(1)连接MD,

∵点E是DC的中点,ME⊥DC,

∴MD=MC,

又∵AD=CF,MF=MA,

∴△AMD≌△FMC,

∴∠MAD=∠MFC=120°,

∵AD∥BC,∠ABC=90°,

∴∠BAD=90°,

∴∠MAB=30°,

在Rt△AMB中,∠MAB=30°,

∴BM=AM,

即AM=2BM;

(2)连接MD,

∵点E是DC的中点,ME⊥DC,

∴MD=MC,

又∵AD=CF,MF=MA,

∴△AMD≌△FMC,

∴∠ADM=∠FCM,

∵AD∥BC,

∴∠ADM=∠CMD

∴∠CMD=∠FCM,

∵MD=MC,ME⊥DC,

∴∠DME=∠CME=∠CMD,

∴∠CME=∠FCM,

在Rt△MBP中,∠MPB=90°﹣∠CME=90°﹣∠FCM.

点评: 此题主要考查了梯形的性质、全等三角形的性质与判定,及等腰三角形的性质与判定,综合性比较强.

七、(本题满分12分)

22. 某加油站五月份营销一种油品的销售利润y(万元)与销售量x(万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价﹣成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:

(1)求销售量x为多少时,销售利润为4万元;

(2)分别求出线段AB与BC所对应的函数关系式;

(3)我们把销售每升油所获得的利润称为利润率,那么,在OA、AB、BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)

考点: 一次函数的应用;分段函数.

专题: 压轴题;图表型.

分析: (1)根据销售记录每升利润为1元,所以销售利润为4万元时销售量为4万升;

(2)设BC所对应的函数关系式为y=kx+b(k≠0),求出图象中B点和C点的坐标代入关系式中即可.

(3)判断利润率最大,应该看倾斜度.

标签:数学试卷

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。