编辑:
2014-03-29
13. 解析:方程的两根是 ,所以较大的根是 .
14. 解析:把 代入方程,得 ,则 ,所以 .
15. 且 解析:因为 , ,又 ,
所以 , ,即 , ,所以 , ,
所以一元二次方程 变为 .
因为 有实数根,所以 ,解得 .
又因为 ,所以 且 .
16.-3或1 解析:由 得 或 .
17.1 解析:由 ,得 ,原方程可化为 ,
解得 .所以一元二次方程 的一个定根为1.
18. cm 解析:设正方形的边长为 cm,则 ,解得 ,由于边长不能为负,所以 舍去,故正方形的边长为 cm.
19.解:∵ ,∴ .
∴ .∴ .∴ .
20.证明:∵ 恒成立,
∴ 方程有两个不相等的实数根.
21.解:设小正方形的边长为 .
由题意,得 ,
整理,得 解得
所以截去的小正方形的边长为 .
22.解:不存在.理由:解方程 ,得 .
方程 的两根是 .
所以 的值分别是 .
因为 ,所以以 为边长的三角形不存在.
23.(1)证明:∵ ,
∴ 方程有两个不相等的实数根.
(2)解:一元二次方程 的解为 ,
即 .
当 ,且 时,△ 是等腰三角形,则 ;
当 ,且 时,△ 是等腰三角形,则 ,解得 .
所以 的值为5或4.
24.解:(1)设捐款增长率为 ,根据题意列方程,得 ,
解得 (不合题意,舍去).
答:捐款增长率为10%.
(2) (元).
答:第四天该单位能收到 元捐款.
25.解:依题意,得 ,
整理,得 ,解得 .
由于 ,所以 舍去,所以 .
答:起步价是10元.
相关推荐:
标签:数学同步练习
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。