您当前所在位置:首页 > 高考 > 高考数学 > 高考数学题型归纳

2017高考数学常考题型整理推荐

编辑:

2017-08-24

题型三 等差、等比数列的综合应用

例3 已知数列{an}的前n项和Sn满足条件2Sn=3(an-1),其中n∈N*.

(1)证明:数列{an}为等比数列;

(2)设数列{bn}满足bn=log3an,若cn=anbn,求数列{cn}的前n项和.

破题切入点 (1)利用an=Sn-Sn-1求出an与an-1之间的关系,进而用定义证明数列{an}为等比数列.

(2)由(1)的结论得出数列{bn}的通项公式,求出cn的表达式,再利用错位相减法求和.

(1)证明 由题意得an=Sn-Sn-1=32(an-an-1)(n≥2),

∴an=3an-1,∴anan-1=3(n≥2),

又S1=32(a1-1)=a1,解得a1=3,

∴数列{an}是首项为3,公比为3的等比数列.

(2)解 由(1)得an=3n,则bn=log3an=log33n=n,

∴cn=anbn=n•3n,

设Tn=1•31+2•32+3•33+…+(n-1)•3n-1+n•3n,

3Tn=1•32+2•33+3•34+…+(n-1)•3n+n•3n+1.

∴-2Tn=31+32+33+…+3n-n•3n+1

=3(1-3n)1-3-n•3n+1,

∴Tn=(2n-1)3n+1+34.

总结提高 (1)关于等差、等比数列的基本量的运算,一般是已知数列类型,根据条件,设出a1,an,Sn,n,d(q)五个量的三个,知三求二,完全破解.

(2)等差数列和等比数列有很多相似的性质,可以通过类比去发现、挖掘.

(3)等差、等比数列的判断一般是利用定义,在证明等比数列时注意证明首项a1≠0,利用等比数列求和时注意公比q是否为1.

高考数学常考题型就到这儿了,体会每篇文章的不同,摘取自己想要的,友情提醒,理解最重要哦!!!【高考数学题型归纳】帮助大家轻松愉快地进行高考复习~

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。