编辑:
2014-06-05
22. (10分)如图1,已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.
(1)连接GD,求证:△ADG≌△ABE.
(2)连接FC,通过观察,猜测∠FCN的度数,并说明理由.
(3)如图2,将图1中的正方形ABCD改为矩形ABCD,且ABa,BCb(a,b为常数),E是线段BC上一动点(不含端点B,C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.当点E由B向C运动时,∠FCN的大小是否总保持不变?若∠FCN的大小不变,请用含a,b的代数式表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.
图1 图2
23. (11分)已知二次函数y=a(x26x+8)(a>0)的图象与x轴分别交于A,B两点,与y轴交于点C,点D是抛物线的顶点.
(1)如图1,连接AC,将△OAC沿直线AC翻折,若点O的对应点O'恰好落在该抛物线的对称轴上,求实数a的值.
(2)如图2,在正方形EFGH中,点E,F的坐标分别是(4,4),(4,3),边HG位于边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的任意一点,则四条线段PA,PB,PC,PD不能与任何一个平行四边形的四条边对应相等(即这四条线段不能构成平行四边
形).”若点P是边EF或边FG上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程.
(3)如图2,当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是否存在一个正数a,使得四条线段PA,PB,PC,PD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.
以上就是小编为大家准备的2014年高中第二册数学期末考试题练习,希望给大家带来帮助。
相关推荐
标签:高一数学试题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。