编辑:
2014-05-12
sim??0.8c??1(u?2)={u?3,u?5,u?6}
所以,DCV(c?1)=(3,4,2,4,,3,1)。同理可得DCV(c?2)=(1,3,2,3,4,3),DCV(c?3)=(2,3,3,3,3,2)。
由各个条件属性的数字特征向量,取δ=0.02,使用模糊矩阵闭包运算方法[9,10]可以求得
[t(R)]=10.560.56?0.5610.56?0.560.561
取λ=0.8可得
[t(R)]?λ=1 0 0?0 1 0?0 0 1
在模糊等价矩阵的截集阈值λ=0.8的条件下,连续型条件属性的模糊规则约简算法各连续条件属性是不相关的。因此表1的主观约简集为{c?1,c?2,c?3},这个结果与文献[8]所得的结果完全一致。
通过这个实例说明,利用本文算法不仅能够解决连续域决策表属性约简问题,而且还可以根据需要获得主观的属性约简集和一组模糊规则集,这说明本算法是可行的。
5 结束语
本文针对粗糙集对于连续域属性决策表的处理能力差以及不容易获得模糊集之间关系等问题,提出一种把模糊集和粗糙集结合起来的连续型条件属性模糊规则约简算法。实例验证表明,采用该算法,用户可以根据实际决策需要和领域知识更改阈值,从而获得满意的模糊规则结果。
参考文献:
[1]
标签:计算机理论
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。