编辑:
2016-07-08
9. 将自然数1,2,3……15,这15个自然数分成两组数A和B.求证:A或者B中,必有两个不同的数的和为完全平方数.
解:假设A,B两组中都没有不同的两个数的和是完全平方数,我们说明是不可能的.
不妨设1在A组
1+3=4=,1+15=16=
3,15都在B组
3+6=9=
6须在A组
6+10=16=
又得到10应在B组,这时,B组已有两数和为完全平方数了.
10+15=25=
所以,在A组或B组中,必有两个不相同的数的和为完全平方数.
10. 把一张纸剪成6块,从中任取几块,将每一又块剪成6块,再任取几块,又将每一块剪成6块,如此剪下去,问:经过有限次后,能否恰好剪成1999块 说明理由.
解:设剪成6块后,第一次从中取出块,将每一块剪成6块,则多出了5块,这时,共有:
6+5=1+5+5
=5(+1)+1(块)
第二次从中又取出块,每块剪成6块,增加了5块,这时,共有
6+5+5
=5(++1)+1(块)
以此类推,第n次取块,剪成6块后共有
5(++……++1)+1(块)
因此,每次剪完后,纸的总数都是(5k+1)的自然数(即除以5余1)
1999÷5=399……4
所以,不可能得到1999张纸块.
以上就是为大家分享的六年级数学下册暑假作业,希望对大家有帮助。
相关推荐:
标签:六年级数学暑假作业
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。