编辑:
2015-10-17
(2)
P(甲)=
注:第(1)问中不检验分式方程的根,以及不写过程直接得1个白球,不扣分.
22.(本题满分8分)如图, 是 的直径, 为圆周上一点, , 过点 的切线与 的延长线交于点 .
求证:(1) ;
(2) ≌ .
证明(1)∵ 是 的直径,∴ ,由 ,∴
又 ,∴
∴ ,∴ .
(2)在 中, ,得 ,又 ,∴ .
由 切 于点 ,得 .
在 和 中,
∴ ≌
23. 如图,在矩形ABCD中,AD=4,AB=m(m>4),点P是AB边上的任意一点(不与A、B重合),连结PD,过点P作PQ⊥PD,交直线BC于点Q.
(1)当m=10时,是否存在点P使得点Q与点C重合?若存在,求出此时AP的长;若不存在,说明理由;
(2)连结AC,若PQ∥AC,求线段BQ的长(用含m的代数式表示)
(3)若△PQD为等腰三角形,求以P、Q、C、D为顶点的四边形的面积S与m之间的函数关系式,并写出m的取值范围.
解(1) 假设当m=10时,存在点P使得点Q与点C重合(如下图),
∵PQ⊥PD∴∠DPC=90°∴∠APD+∠BPC=90°,
又∠ADP+∠APD=90°,∴∠BPC=∠ADP,
又∠B=∠A=90°,∴△PBC∽△DAP,∴ ,
∴ ,∴ 或8,∴存在点P使得点Q与点C重合,出此时AP的长2 或8.
(2) 如下图,∵PQ∥AC,∴∠BPQ=∠BAC,∵∠BPQ=∠ADP,
∴∠BAC=∠ADP,又∠B=∠DAP=90°,∴△ABC∽△DAP,
∴ ,即 ,∴ .
∵PQ∥AC,∴∠BPQ=∠BAC,∵∠B=∠B,∴△PBQ∽△ABC,
即 ,∴ .
(3)由已知 PQ⊥PD,所以只有当DP=PQ时,
△PQD为等腰三角形(如图),∴∠BPQ=∠ADP,又∠B=∠A=90°,∴△PBQ≌△DAP,
∴PB=DA=4,AP=BQ= ,
∴以P、Q、C、D为顶点 的四边形的面积S与m之间的函数关系式为:
S四边形PQCD= S矩形ABCD-S△DAP-S△QBP=
=
=16
(4< ≤8).
标签:中考数学模拟题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。