您当前所在位置:首页 > 中考 > 中考数学 > 中考数学模拟题

2016年中考数学第一轮模拟复习试题

编辑:

2016-04-15

6.解:(1)∵月季园面积为0.04平方千米,月季园所占比例为20%,

则牡丹园的面积为:15%× =0.03(平方千米);

(2)植物花园的总面积为:0.04÷20%=0.2(平方千米),

则第九届园博会会园区陆地面积为:0.2×18=3.6(平方千米),

第七、八界园博会的水面面积之和=1+0.5=1.5 (平方千米),

则水面面积为1.5平方千米,

如图:

(3)由图标可得,停车位数量与单日最多接待游客量成正比例关系,比值约为500,

则第十届园博会大约需要设置的停车位数量约为:500×7.4≈3700.

故答案为:0.03;3700.

7.(2013•六盘水)(1)观察发现

如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:

作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.

如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:

作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为 .

(2)实践运用

如图(3):已知⊙O的直径CD为2, 的度数为60°,点B是 的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的值最小,则BP+AP的最小值为 .

(3)拓展延伸

如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN的值最小,保留作图痕迹,不写作法.

7.解:(1)观察发现

如图(2),CE的长为BP+PE的最小值,

∵在等边三角形ABC中,AB=2,点E是AB的中点

∴CE⊥AB,∠BCE= ∠BCA=30°,BE=1,

∴CE= BE= ;

故答案为 ;

(2)实践运用

如图(3),过B点作弦BE⊥CD,连结AE交CD于P点,连结OB、OE、OA、PB,

∵BE⊥CD,

∴CD平分BE,即点E与点B关于CD对称,

∵ 的度数为60°,点B是 的中点,

∴∠BOC=30°,∠AOC=60°,

∴∠EOC=30°,

∴∠AOE=60°+30°=90°,

∵OA=OE=1,

∴AE= OA= ,

∵AE的长就是BP+AP的最小值.

故答案为 ;

(3)拓展延伸

如图(4).

8.(2013•盐城)阅读材料

如图①,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且点D在AB边上,AB、EF的中点均为O,连结BF、CD、CO,显然点C、F、O在同一条直线上,可以证明△BOF≌△COD,则BF=CD.

解决问题[

(1)将图①中的Rt△DEF绕点O旋转得到图②,猜想此时线段BF与CD的数量关系,并证明你的结论;

(2)如图③,若△ABC与△DEF都是等边三角形,AB、EF的中点均为O,上述(1)中的结论仍然成立吗?如果成立,请说明理由;如不成立,请求出BF与CD之间的数量关系;

(3)如图④,若△ABC与△DEF都是等腰三角形,AB、EF的中点均为0,且顶角∠ACB=∠EDF=α,请直接写出 的值(用含α的式子表示出来)

8.解:(1)猜想:BF=CD.理由如下:

如答图②所示,连接OC、OD.

∵△ABC为等腰直角三角形,点O为斜边AB的中点,

∴OB=OC,∠BOC=90°.

∵△DEF为等腰直角三角形,点O为斜边EF的中点,

∴OF=OD,∠DOF=90°.

∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF,[www@..c~^o*#m]

∴∠BOF=∠COD.

∵在△BOF与△COD中,

∴△BOF≌△COD(SAS),

∴BF=CD.

(2)答:(1)中的结论不成立.

如答图③所示,连接OC、OD.

∵△ABC为等边三角形,点O为边AB的中点,

∴ =tan30°= ,∠BOC=90°.

∵△DEF为等边三角形,点O为边EF 的中点,

∴ =tan30°= ,∠DOF=90°.

∴ = .

∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF,

∴∠ BOF=∠COD.[

在△BOF与△COD中,

∵ = ,∠BOF=∠COD,

∴△BOF∽△COD,

∴ .

(3)如答图④所示,连接OC、OD.

∵△ABC为等腰三角形,点O为底边AB的中点,

∴ =tan ,∠BOC=90°.

∵△DEF为等腰三角形,点O为底边EF的中点,

∴ = tan ,∠DOF=90°.

∴ =tan .

∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF,

∴∠BOF=∠COD.

在△BOF与△COD中,

∵ =tan ,∠BOF=∠COD,

∴△BOF∽△COD,

∴ .

9.(2013•日照)问题背景:

如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.

(1)实践运用:

如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为 .

(2)知识拓展:

如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.

9.解:(1)如图,作点B关于CD的对称点E,连接AE交CD于点P,

此时PA+PB最小,且等于AE.

作直径AC′,连接C′E.

根据垂径定 理得弧BD=弧DE.

∵∠ACD=30°,

∴∠AOD=60°,∠DOE=30°,

∴∠AOE=90°,

∴∠C′AE=45°,

又AC为圆的直径,∴∠AEC′=90°,

∴∠C′=∠C′AE=45°,

∴C′E=AE= AC′=2 ,

即AP+BP的最小值是2 .

故答案为:2 ;

(2)如图,在斜边AC上截取AB′=AB,连结BB′.

∵AD平分∠BAC,

∴点B与点B′关于直线AD对称.

过点B′作B′F⊥AB,垂足为F,交AD于E,连结BE,xkb1.com

则线段B′F的长即为所求.(点到直线的距离最短)

在Rt△AFB′中,∵∠BAC=45°,AB′=AB=10,

∴B′F=AB′•sin45°=AB•sin45° =10× =5 ,

∴BE+EF的最小值为5 .

10.(2013•衢州)【提出问题】

(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.

【类比探究】

(2)如图2,在等边△ABC中,点 M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.

【拓展延伸】

(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.

10.(1)证明:∵△ABC、△AMN是等边三角形,

∴AB=AC,AM=AN,∠BAC=∠MAN=60°,

∴∠BAM=∠CAN,

∵在△BAM和△CAN中,

∴△BAM≌△CAN(SAS),

∴∠ABC=∠ACN.

(2)解:结论∠ABC=∠ACN仍成立.

理由如下:∵△ABC、△AMN是等边三角形,

∴AB=AC,AM=AN,∠BAC=∠MAN=60°,

∴∠BAM=∠CAN,

∵在△BAM和△CAN中,

∴△BAM≌△CAN(SAS),

∴∠ABC=∠ACN.

(3)解:∠ABC=∠ACN.[

理由如下:∵BA=BC,MA=MN,顶角∠ABC=∠AMN,

∴底角∠BAC=∠MAN,

∴△ABC∽△AMN,

∴ ,

又∵∠BAM=∠BAC-∠MAC,∠CAN=∠MAN-∠MAC,

∴∠BAM=∠CAN,

∴△BAM∽△CAN,

∴∠ABC=∠ACN.

11.(2013•咸宁)阅读理解:

如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC ,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:

(1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;

(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;

拓展探究:

(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.

11.解:(1)点E是四边形ABCD的边AB上的相似点.

理由:∵∠A=55°,

∴∠ADE+∠DEA=125°.

∵∠DEC=55°,

∴∠BEC+∠DEA=125°.

∴∠ADE=∠BEC.(2分)

∵∠A=∠B,

∴△ADE∽△BEC.

∴点E是四边形ABCD的AB边上的相似点.

(2)作图如下:

(3)∵点E是四边形ABCM的边AB上的一个强相似点,

∴△AEM∽△BCE∽△ECM,

∴∠BCE=∠ECM=∠AEM.

由折叠可知:△ECM≌△DCM,

∴∠ECM=∠DCM,CE=CD,

∴∠BCE= ∠BCD=30°,

∴BE= CE= AB.

在Rt△BCE中,tan∠BCE= =tan30°,

∴ ,

∴ .

12.(2013•南京)对于两个相似三角形,如果沿周界按对应点顺序环绕的方向相同,那么称这两个三角形互为顺相似;如果沿周界按对应点顺序环绕的方向相反,那么称这两个三角形互为逆相似.例如,如图①,△ABC∽△A′B′C′,且沿周界ABCA与A′B′C′A′环绕的方向相同,因此△ACB和△A′B′C′互为顺相似;如图②,△ABC∽△A′B′C′,且沿周界ABCA与A′B′C′A′环绕的方向相反,因此△ACB和△A′B′C′互为逆相似.

(1)根据图Ⅰ,图Ⅱ和图Ⅲ满足的条件.可得下列三对相似三角形:①△ADE与△ABC;②△GHO与△KFO;③△NQP与△NMQ;其中,互为顺相似的是 ;互为逆相似的是 .(填写所有符合要求的序号).

[*出&%^#版网]

(2)如图③,在锐角△ABC中,∠A<∠B<∠C,点P在△ABC的边上(不与点A,B,C重合).过点P画直线截△ABC,使截得的一个三角形与△ABC互为逆相似.请根据点P的不同位置,探索过点P的截线的情形,画出图形并说明截线满足的条件,不必说明理由.

12.解:(1)互为顺相似的是 ①;互为逆相似的是 ②③;

(2)根据点P在△ABC边上的位置分为以下三种情况:

第一种情况:如图①,点P在BC(不含点B、C)上,过点P只能画出2条截线PQ1、PQ2,分别使∠CPQ1=∠A,∠BPQ2=∠A,此时△PQ1C、△PBQ2都与△ABC互为逆相似.

第二种情况:如图②,点P在AC(不含点A、C)上,过点B作∠CBM=∠A,BM交AC于点M.

当点P在AM(不含点M)上时,过点P1只能画出1条截线P1Q,使∠AP1Q=∠ABC,此时△AP1Q与△ABC互为逆相似;

当点P在CM上时,过点P2只能画出2条截线P2Q1、P2Q2,分别使∠AP2Q1=∠ABC,∠CP2Q2=∠ABC,此时△AP2Q1、△Q2P2C都与△ABC互为逆相似.

第三种情况:如图③,点P在AB(不含点A、B)上,过点C作∠BCD=∠A,∠ACE=∠B,CD、CE分别交AC于点D、E.

12.(2013•南京)对于两个相似三角形,如果沿周界按对应点顺序环绕的方向相同,那么称这两个三角形互为顺相似;如果沿周界按对应点顺序环绕的方向相反,那么称这两个三角形互为逆相似.例如,如图①,△ABC∽△A′B′C′,且沿周界ABCA与A′B′C′A′环绕的方向相同,因此△ACB和△A′B′C′互为顺相似;如图②,△ABC∽△A′B′C′,且沿周界ABCA与A′B′C′A′环绕的方向相反,因此△ACB和△A′B′C′互为逆相似.

(1)根据图Ⅰ,图Ⅱ和图Ⅲ满足的条件.可得下列三对相似三角形:①△ADE与△ABC;②△GHO与△KFO;③△NQP与△NMQ;其中,互为顺相似的是 ;互为逆相似的是 .(填写所有符合要求的序号).

[*出&%^#版网]

(2)如图③,在锐角△ABC中,∠A<∠B<∠C,点P在△ABC的边上(不与点A,B,C重合).过点P画直线截△ABC,使截得的一个三角形与△ABC互为逆相似.请根据点P的不同位置,探索过点P的截线的情形,画出图形并说明截线满足的条件,不必说明理由.

12.解:(1)互为顺相似的是 ①;互为逆相似的是 ②③;

(2)根据点P在△ABC边上的位置分为以下三种情况:

第一种情况:如图①,点P在BC(不含点B、C)上,过点P只能画出2条截线PQ1、PQ2,分别使∠CPQ1=∠A,∠BPQ2=∠A,此时△PQ1C、△PBQ2都与△ABC互为逆相似.

第二种情况:如图②,点P在AC(不含点A、C)上,过点B作∠CBM=∠A,BM交AC于点M.

当点P在AM(不含点M)上时,过点P1只能画出1条截线P1Q,使∠AP1Q=∠ABC,此时△AP1Q与△ABC互为逆相似;

当点P在CM上时,过点P2只能画出2条截线P2Q1、P2Q2,分别使∠AP2Q1=∠ABC,∠CP2Q2=∠ABC,此时△AP2Q1、△Q2P2C都与△ABC互为逆相似.

第三种情况:如图③,点P在AB(不含点A、B)上,过点C作∠BCD=∠A,∠ACE=∠B,CD、CE分别交AC于点D、E.

当点P在AD(不含点D)上时,过点P只能画出1条截线P1Q,使∠AP1Q=∠ABC,此时△AQP1与△ABC互为逆相似;

当点P在DE上时,过点P2只能画出2条截线P2Q1、P2Q2,分别使∠AP2Q1=∠ACB,∠BP2Q2=∠BCA,此时△AQ1P2、△Q2BP2

都与△ABC互为逆相似;

当点P在BE(不含点E)上时,过点P3只能画出1条截线P3Q′,使∠BP3Q′=∠BCA,此时△Q′BP3与△ABC互为逆相似.

希望为大家提供的中考数学第一轮模拟复习试题的内容,能够对大家有用,更多相关内容,请及时关注!

相关推荐

2016中考物理答题时间如何合理安排 

初中物理复习指导:教你学习小技巧  

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。